2021 |
Singh G, Bahadur R, Mee Lee J, Young Kim I, Ruban AM, Davidraj JM, et al., 'Nanoporous activated biocarbons with high surface areas from alligator weed and their excellent performance for CO
|
|
|
2021 |
Lei Z, Lee JM, Singh G, Sathish CI, Chu X, Al-Muhtaseb AH, et al., 'Recent advances of layered-transition metal oxides for energy-related applications', Energy Storage Materials, 36 514-550 (2021)
© 2021 Elsevier B.V. In order to overcome the current energy and environment crisis caused by fossil fuels depletion and greenhouse gas emission, it is indispensable to introduce ... [more]
© 2021 Elsevier B.V. In order to overcome the current energy and environment crisis caused by fossil fuels depletion and greenhouse gas emission, it is indispensable to introduce new, eco-friendly, high-performance materials into energy conversion and storage applications. 2D transition metal oxides (TMOs) are regarded as the promising candidates due to their excellent electrochemical properties. However, their innate poor electronic conductivity greatly restricts their applications in energy conversion and storage. This review discusses and summarizes the developed strategies to overcome the limitation through surface modification including defect engineering, heteroatom incorporation and interlayer doping, as well as hybridization with conductive materials. In addition, a detailed summary of their synthesis and applications in supercapacitors, lithium ion batteries and electrocatalysis is included. Finally, future prospective such as opportunities and challenges is discussed for the successful implementation of 2D TMOs in the field of energy applications.
|
|
|
2021 |
Bodhankar PM, Sarawade PB, Singh G, Vinu A, Dhawale DS, 'Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting', Journal of Materials Chemistry A, 9 3180-3208 (2021)
© The Royal Society of Chemistry 2021. Highly efficient, low-cost electrocatalysts having superior activity and stability are crucial for practical electrochemical water splitting... [more]
© The Royal Society of Chemistry 2021. Highly efficient, low-cost electrocatalysts having superior activity and stability are crucial for practical electrochemical water splitting, which involves hydrogen and oxygen evolution reactions (HER and OER). The sustainable production of hydrogen fuel from electrochemical water splitting requires the development of a highly efficient and stable electrocatalyst with low overpotential that drives electrochemical redox reactions. Electrochemical water splitting using highly active nickel-iron layered double hydroxide (NiFe LDH) catalyst having a very high turnover frequency and mass activity is considered as a potential contender in the area of electrocatalysis owing to the practical challenges including high efficiency and long durability at low overpotential, which shows great potential in future hydrogen economy. This review includes certain recommendations on enhancing the electrocatalytic performance of NiFe LDH-based electrocatalyst, particularly through morphology engineering, construction of hierarchical/core-shell nanostructures, and doping of heteroatoms through combined experimental assessment and theoretical investigations, which in turn improve the electrocatalytic performance. Finally, emphasis is made on the bifunctional activity of the NiFe LDH catalyst for overall water splitting. At the end, the conclusions and future outlook for the design of the NiFe LDH catalyst towards scale-up for their use as electrolyzer at the industrial level are also discussed.
|
|
|
2021 |
Baskar AV, Ruban AM, Davidraj JM, Singh G, Al-Muhtaseb AH, Lee JM, et al., 'Single-step synthesis of 2D mesoporous C
The design of advanced carbon-based electrodes with unique electronic, electrical, and textural properties is critical for the development of high-performance energy storage devic... [more]
The design of advanced carbon-based electrodes with unique electronic, electrical, and textural properties is critical for the development of high-performance energy storage devices. Ordered mesoporous fullerene/carbon hybrids were fabricated through nanotemplating approach by mixing the fullerene precursor in chloronaphthalene with different amount of sucrose using SBA-15 as a template. The characterization data showed that the prepared materials demonstrated an ordered structure with much better textural parameters than pure mesoporous fullerene. The surface properties could be controlled with the simple adjustment of the sucrose molecules in the synthesis mixture. The prepared materials were applied as electrodes for supercapacitance and Li-ion battery applications. The optimized sample offered the specific capacitance of 213 F/g at 0.5 A/g which is much higher than that of activated carbon, multi-walled carbn nanotube, ordered mesoporous carbon, and mesoporous C60. The same sample also delivered the discharge capacities of 1299 mAh/g at 0.1A/g, demonstrating the best Li-ion battery performance. These results revealed the importance of carbon coating on the mesoporous fullerene for energy storage devices as it facilitates the easy electron transport between the fullerene molecules and further supports the accessibility and diffusion of the electrolytes due to high specific surface area.
|
|
|
2021 |
Vidyasagar D, Bhoyar T, Singh G, Vinu A, 'Recent Progress in Polymorphs of Carbon Nitride: Synthesis, Properties, and Their Applications.', Macromol Rapid Commun, e2000676 (2021)
|
|
|
2021 |
Baskar AV, Davidraj JM, Ruban AM, Joseph S, Singh G, Al-Muhtaseb AH, et al., 'Fabrication of Mesoporous C
|
|
|
2020 |
Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, et al., 'Silica-based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment', Chemical Record, (2020)
© 2020 The Chemical Society of Japan & Wiley-VCH GmbH Prostate cancer (PCa) is one of the most commonly diagnosed cancers and is the fifth common cause of cancer-related mor... [more]
© 2020 The Chemical Society of Japan & Wiley-VCH GmbH Prostate cancer (PCa) is one of the most commonly diagnosed cancers and is the fifth common cause of cancer-related mortality in men. Current methods for PCa treatment are insufficient owing to the challenges related to the non-specificity, instability and side effects caused by the drugs and therapy agents. These drawbacks can be mitigated by the design of a suitable drug delivery system that can ensure targeted delivery and minimise side effects. Silica based nanoparticles (SBNPs) have emerged as one of the most versatile materials for drug delivery due to their tunable porosities, high surface area and tremendous capacity to load various sizes and chemistry of drugs. This review gives a brief overview of the diagnosis and current treatment strategies for PCa outlining their existing challenges. It critically analyzes the design, development and application of pure, modified and hybrid SBNPs based drug delivery systems in the treatment of PCa, their advantages and limitations.
|
|
|
2020 |
Lee JM, Singh G, Cha W, Kim S, Yi J, Hwang S-J, Vinu A, 'Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes', ACS Energy Letters, 5 1939-1966 (2020) [C1]
|
|
|
2020 |
Ramadass K, Sathish CI, MariaRuban S, Kothandam G, Joseph S, Singh G, et al., 'Carbon Nanoflakes and Nanotubes from Halloysite Nanoclays and their Superior Performance in CO2 Capture and Energy Storage.', ACS Appl Mater Interfaces, 12 11922-11933 (2020) [C1]
|
|
|
2020 |
Kim S, Hankel M, Cha W, Singh G, Lee JM, Kim IY, Vinu A, 'Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries', Nano Energy, 72 (2020) [C1]
|
|
|
2020 |
Kim S, Cha W, Ramadass K, Singh G, Kim IY, Vinu A, 'Single-Step Synthesis of Mesoporous Carbon Nitride/Molybdenum Sulfide Nanohybrids for High-Performance Sodium-Ion Batteries', Chemistry - An Asian Journal, 15 1863-1868 (2020) [C1]
|
|
|
2020 |
Joseph S, Saianand G, Benzigar MR, Ramadass K, Singh G, Gopalan A-I, et al., 'Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment', ADVANCED SUSTAINABLE SYSTEMS, 5 (2020)
|
|
|
2020 |
Talapaneni SN, Singh G, Kim IY, AlBahily K, Al-Muhtaseb AH, Karakoti AS, et al., 'Nanostructured Carbon Nitrides for CO2 Capture and Conversion', Advanced Materials, 32 (2020) [C1]
|
|
|
2020 |
Ismail IS, Singh G, Smith P, Kim S, Yang JH, Joseph S, et al., 'Oxygen functionalized porous activated biocarbons with high surface area derived from grape marc for enhanced capture of CO2 at elevated-pressure', Carbon, 160 113-124 (2020) [C1]
|
|
|
2020 |
Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D, et al., 'Emerging trends in porous materials for CO2 capture and conversion.', Chemical Society Reviews, 49 4360-4404 (2020) [C1]
|
|
|
2020 |
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, et al., 'Recent Advances in the Preparation and Applications of Organo-functionalized Porous Materials', Chemistry - An Asian Journal, 15 2588-2621 (2020) [C1]
|
|
|
2019 |
Singh G, Ramadass K, Lee JM, Ismail IS, Singh M, Bansal V, et al., 'Convenient design of porous and heteroatom self-doped carbons for CO2 capture', Microporous and Mesoporous Materials, 287 1-8 (2019) [C1]
|
|
|
2019 |
Ramadass K, Singh G, Lakhi KS, Benzigar MR, Yang JH, Kim S, et al., 'Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture', Microporous and Mesoporous Materials, 277 229-236 (2019) [C1]
|
|
|
2019 |
Joseph S, Kempaiah DM, Benzigar MR, Ilbeygi H, Singh G, Talapaneni SN, et al., 'Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application', Microporous and Mesoporous Materials, 280 337-346 (2019) [C1]
|
|
|
2019 |
Ramadass K, Sathish CI, Johns A, Ruban SJ, Singh G, Lakhi KS, et al., 'Characterization and Hydrogen Storage Performance of Halloysite Nanotubes', Journal of Nanoscience and Nanotechnology, 19 7892-7898 (2019) [C1]
|
|
|
2019 |
Singh G, Lakhi KS, Sathish CI, Ramadass K, Yang J-H, Vinu A, 'Oxygen-Functionalized Mesoporous Activated Carbons Derived from Casein and Their Superior CO2 Adsorption Capacity at Both Low- and High-Pressure Regimes', ACS APPLIED NANO MATERIALS, 2 1604-1613 (2019) [C1]
|
|
|
2019 |
Singh G, Tiburcius S, Ruban SM, Shanbhag D, Sathish CI, Ramadass K, Vinu A, 'Pure and strontium carbonate nanoparticles functionalized microporous carbons with high specific surface areas derived from chitosan for CO2 adsorption', Emergent Materials, 2 337-349 (2019) [C1]
|
|
|
2019 |
Singh G, Ismail IS, Bilen C, Shanbhag D, Sathish CI, Ramadass K, Vinu A, 'A facile synthesis of activated porous carbon spheres from D-glucose using a non-corrosive activating agent for efficient carbon dioxide capture', Applied Energy, 255 (2019) [C1]
|
|
|
2019 |
Singh G, Lakhi KS, Ramadass K, Sathish CI, Vinu A, 'High-Performance Biomass-Derived Activated Porous Biocarbons for Combined Pre- and Post-Combustion CO2 Capture', ACS Sustainable Chemistry and Engineering, 7 7412-7420 (2019) [C1]
|
|
|
2019 |
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan A-I, Baskar AV, et al., 'Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures', BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 92 216-244 (2019) [C1]
|
|
|
2019 |
Singh G, Lakhi KS, Sil S, Bhosale SV, Kim IY, Albahily K, Vinu A, 'Biomass derived porous carbon for CO2 capture', Carbon, 148 164-186 (2019) [C1]
|
|
|
2018 |
Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, et al., 'Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications', Chemical Society Reviews, 47 2680-2721 (2018) [C1]
|
|
|
2018 |
Singh G, Lakhi KS, Ramadass K, Kim S, Stockdale D, Vinu A, 'A combined strategy of acid-assisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2capture', Microporous and Mesoporous Materials, 271 23-32 (2018) [C1]
|
|
|
2018 |
Singh G, Lakhi KS, Park D-H, Srivastava P, Naidu R, Vinu A, 'Facile One-Pot Synthesis of Activated Porous Biocarbons with a High Nitrogen Content for CO2 Capture', CHEMNANOMAT, 4 281-290 (2018) [C1]
|
|
|
2018 |
Lakhi KS, Singh G, Kim S, Baskar AV, Joseph S, Yang J, et al., 'Mesoporous Cu-SBA-15 with highly ordered porous structure and its excellent CO2 adsorption capacity', Microporous and Mesoporous Materials, 267 134-141 (2018) [C1]
|
|
|
2017 |
Singh G, Lakhi KS, Kim IY, Kim S, Srivastava P, Naidu R, Vinu A, 'Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO2 Adsorption.', ACS Applied Materials & Interfaces, 9 29782-29793 (2017) [C1]
|
|
|
2017 |
Singh G, Kim IY, Lakhi KS, Srivastava P, Naidu R, Vinu A, 'Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity', CARBON, 116 448-455 (2017) [C1]
|
|
|
2017 |
Lakhi KS, Park D-H, Singh G, Talapaneni SN, Ravon U, Al-Bahily K, Vinu A, 'Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO 2 adsorption capacity', Journal of Materials Chemistry A, 5 16220-16230 (2017)
|
|
|
2017 |
Singh G, Kim IY, Lakhi KS, Joseph S, Srivastava P, Naidu R, Vinu A, 'Heteroatom functionalized activated porous biocarbons and their excellent performance for CO2 capture at high pressure', JOURNAL OF MATERIALS CHEMISTRY A, 5 21196-21204 (2017)
|
|
|