The University of Newcastle, Australia
Available in 2020
Course code

PHYS1200

Units

10 units

Level

1000 level

Course handbook

Description

Physics underpins most aspects of modern technology including those with application to the life sciences and medicine. Two examples include the development of electromagnetic wave theory, which led to electric power, radio and television; and atomic physics, which resulted in electronics, microchips and computers, nuclear medicine and radiation treatment of cancers. This course provides an overview of topics in physics that are of particular importance to the life and medical sciences. The course is non-calculus based and covers mechanics (units, motion, biomechanics, energy), electricity and magnetism, heat, nuclear physics, fluids, and waves.


Availability

Callaghan

  • Semester 1 - 2020

Learning outcomes

On successful completion of the course students will be able to:

1. Explain the basic principles and concepts underlying a broad range of fundamental areas of physics;

2. Connect their knowledge of physics to everyday situations and to life sciences and medicine;

3. Solve qualitative and quantitative problems using basic mathematics and principles of physics;

4. Perform experiments using scientific equipment and interpret the results in terms of the basic concepts in physics;

5. Contribute to team and group work for scientific investigations and for the process of learning. Contribute to team and group work for scientific investigations and for the process of learning. Contribute to team and group work for scientific investigations and for the process of learning


Content

A non-calculus based course aimed at providing students with a basic understanding of the main principles and concepts in physics.

  • Basic Mechanics: units of measurement and unit conversions; concentrations and volumes; laws of motion; mechanical equilibrium and biomechanics; rotational dynamics; work & energy; human energy use and efficiency.
  • Electricity: electric charges, forces and fields; voltage - cell membranes and separation of DNA; capacitance; electric current and electrical power; electric circuits.
  • Magnetism: forces on electric charge and current in magnetic fields; transformers; applications of magnetism in life sciences; nuclear magnetic resonance (NMR).
  • Thermal Physics: temperature; thermal expansion; ideal gas law; heat, specific heat and calorimetry; human activity and heat; heat transfer.
  • Nuclear Physics: nuclear structure; radioactivity; radiocarbon dating; biology and ionising radiation; isotopes and DNA.
  • Fluid Mechanics: density, pressure and viscosity; Archimedes principle; flow rate and diffusion, equation of continuity; Bernoulli's principle; laminar and turbulent flow; Poiseuille's equation; surface tension.
  • Waves: SHM and resonance; types of wave motion; reflection, transmission, superposition and interference; EM Spectrum; optical instruments; fluorescence and biology.

Requisite

This course has similarities to PHYS1150, PHYS1210, or PHYS1205. If you have successfully completed any of these courses you cannot enrol in this course.


Assumed knowledge

HSC Mathematics with a result in Bands 5 or 6, or a pass in MATH1002 or equivalent.


Assessment items

Tutorial / Laboratory Exercises: Laboratory Exercises

In Term Test: Mid-semester test

Formal Examination: Final examination


Compulsory Requirements

In order to pass this course, each student must complete ALL of the following compulsory requirements:

General Course Requirements:

  • Laboratory: Induction Requirement - Students must attend and pass the induction requirements before attending these sessions. - In order to participate in this course students must complete a compulsory safety induction.

Contact hours

Callaghan

Laboratory

Face to Face On Campus 3 hour(s) per Week for 6 Weeks

Lecture

Face to Face On Campus 3 hour(s) per Week for Full Term

Tutorial

Face to Face On Campus 1 hour(s) per Week for Full Term