2021 |
Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS, 'Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils', Journal of Hazardous Materials, 401 (2021) [C1]
|
|
|
2021 |
Gerdelidani AF, Towfighi H, Shahbazi K, Lamb DT, Choppala G, Abbasi S, et al., 'Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils', Journal of Hazardous Materials, 403 (2021) [C1]
|
|
|
2021 |
Abbasi S, Lamb DT, Kader M, Naidu R, Megharaj M, 'The influence of long-term ageing on arsenic ecotoxicity in soil', Journal of Hazardous Materials, 407 (2021)
© 2020 Elsevier B.V. The ageing of a contaminant in soil influences the bioavailability and toxicity of environmental pollutants. Yet, despite arsenic (As) being an important terr... [more]
© 2020 Elsevier B.V. The ageing of a contaminant in soil influences the bioavailability and toxicity of environmental pollutants. Yet, despite arsenic (As) being an important terrestrial contaminant, the effect of As ageing on phytotoxicity has received relatively little research. Research to date has reported predominantly short term (< 0.5 years) experiments. Here, we studied the influence of ageing over 0.25 and 5 years on the phytotoxicity of As (as arsenate) on Cucumis sativus L. (cucumber). The study showed that increasing ageing time of As from 0.25 to 5 years increased the EC10 and EC50 values by 4.0 and 1.76 fold, respectively. The dependence of ageing on soil properties was also examined, although only Freundlich sorption parameters were correlated to the ageing factor (r = 0.68, P = 0.028). Soils with high adsorption capacity also showed the greatest change in toxicity over 5 years. In addition, data was compiled from relevant literature to develop a model for As ecotoxicity. The combined model (n = 54) showed no relationship with pH but was correlated to the oxalate extractable iron content and %clay. Arsenate ecotoxicity (EC50, mg/kg) in the multivariate model was related to oxalate iron content, %clay and ageing time. Thus, the results of this study have significant implications for risk assessment of long-term As contaminated soils.
|
|
|
2021 |
Umeh AC, Naidu R, Shilpi S, Boateng EB, Rahman A, Cousins IT, et al., 'Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses.', Environ Sci Technol, 55 1779-1789 (2021)
|
|
|
2020 |
Wang L, Cheng Y, Lamb D, Naidu R, 'The application of rapid handheld FTIR petroleum hydrocarbon-contaminant measurement with transport models for site assessment: A case study', Geoderma, 361 (2020) [C1]
|
|
|
2020 |
Rahman MA, Lamb D, Rahman MM, Bahar MM, Sanderson P, Abbasi S, et al., 'Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar.', J Hazard Mater, 124488 (2020)
|
|
|
2020 |
Fazle Bari ASM, Lamb D, Choppala G, Bolan N, Seshadri B, Rahman MA, Rahman MM, 'Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation', Journal of Hazardous Materials, 399 (2020) [C1]
|
|
|
2019 |
Wang L, Cheng Y, Lamb D, Megharaj M, Naidu R, 'Application of Ion Selective Electrode array to simultaneously determinate multi-free ions in solution', Environmental Technology and Innovation, 15 (2019) [C1]
|
|
|
2019 |
Shilpi S, Lamb D, Bolan N, Seshadri B, Choppala G, Naidu R, 'Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production', Journal of Environmental Management, 239 73-83 (2019) [C1]
|
|
|
2019 |
Wang L, Cheng Y, Lamb D, Dharmarajan R, Chadalavada S, Naidu R, 'Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment', Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy, 207 183-188 (2019) [C1]
|
|
|
2019 |
Yang X-D, Wang J, Xu M-S, Ali A, Xu Y, Lamb D, et al., 'Effects of the ephemeral stream on plant species diversity and distribution in an alluvial fan of arid desert region: An application of a low altitude UAV', PLOS ONE, 14 (2019) [C1]
|
|
|
2019 |
Zhou X, Lv G, Lamb D, Yang X, 'The Spatial and Temporal Distribution of Ecological Efficiencies in Xinjiang, China', Fresenius Environmental Bulletin, 28 9111-9119 (2019) [C1] |
|
|
2018 |
Shilpi S, Seshadri B, Sarkar B, Bolan N, Lamb D, Naidu R, 'Comparative values of various wastewater streams as a soil nutrient source', CHEMOSPHERE, 192 272-281 (2018) [C1]
|
|
|
2018 |
Qi F, Lamb D, Naidu R, Bolan NS, Yan Y, Ok YS, et al., 'Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar', SCIENCE OF THE TOTAL ENVIRONMENT, 610 1457-1466 (2018) [C1]
|
|
|
2018 |
Kader M, Lamb DT, Wang L, Megharaj M, Naidu R, 'Copper interactions on arsenic bioavailability and phytotoxicity in soil', Ecotoxicology and Environmental Safety, 148 738-746 (2018) [C1]
|
|
|
2017 |
Qi F, Yan Y, Lamb D, Naidu R, Bolan NS, Liu Y, et al., 'Thermal stability of biochar and its effects on cadmium sorption capacity', BIORESOURCE TECHNOLOGY, 246 48-56 (2017) [C1]
|
|
|
2017 |
Qi F, Kuppusamy S, Naidu R, Bolan NS, Ok YS, Lamb D, et al., 'Pyrogenic carbon and its role in contaminant immobilization in soils', CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 47 795-876 (2017) [C1]
|
|
|
2017 |
Wang L, Cheng Y, Lamb D, Lesniewski P, Chen Z, Mallavarapu M, Naidu R, 'Novel recalibration methodologies for ion-selective electrode arrays in the multi-ion interference scenario', Journal of Chemometrics, 31 (2017) [C1]
|
|
|
2017 |
Qi F, Dong Z, Lamb D, Naidu R, Bolan NS, Ok YS, et al., 'Effects of acidic and neutral biochars on properties and cadmium retention of soils', CHEMOSPHERE, 180 564-573 (2017) [C1]
|
|
|
2017 |
Qi F, Naidu R, Bolan NS, Dong Z, Yan Y, Lamb D, et al., 'Pyrogenic carbon in Australian soils', SCIENCE OF THE TOTAL ENVIRONMENT, 586 849-857 (2017) [C1]
|
|
|
2017 |
Dong Z, Bahar MM, Jit J, Kennedy B, Priestly B, Ng J, et al., 'Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid', ENVIRONMENT INTERNATIONAL, 105 86-94 (2017) [C1]
|
|
|
2017 |
Xia Q, Lamb D, Peng C, Ng JC, 'Interaction effects of As, Cd and Pb on their respective bioaccessibility with time in co-contaminated soils assessed by the Unified BARGE Method', ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 24 5585-5594 (2017) [C1]
|
|
|
2017 |
Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T, 'Evaluation of relative bioaccessibility leaching procedure for an assessment of lead bioavailability in mixed metal contaminated soils', Environmental Technology and Innovation, 7 229-238 (2017) [C1]
© 2017 This study investigates the effect of contaminant zinc (Zn) on lead (Pb) bioavailability and bioaccessibility in six contrasting soils spiked with 1500 mg Pb/kg and aged 12... [more]
© 2017 This study investigates the effect of contaminant zinc (Zn) on lead (Pb) bioavailability and bioaccessibility in six contrasting soils spiked with 1500 mg Pb/kg and aged 12 months under laboratory conditions. Zn was added to the soils (7500 mgZn/kg soil) and aged for a further two weeks. In vivo studies were conducted using juvenile swine as a surrogate model for young children. Two compartment pharmacokinetic models were used to analyze the biological response produced by Pb oral solution and spiked soils. Absolute and relative bioavailability of Pb in soils (oral dose of 100 µ g Pb/kg body weight/day) were estimated by comparing them with intravenously administered soluble Pb salt (25 µ g Pb/kg/day) and orally administered the same Pb salt [Pb acetate =(CH3COO)2Pb·3H2O] administered to 3 juvenile pigs per treatment. Lead bioaccessibility was calculated using the in vitro RBALP (i.e. relative bioaccessibility leaching procedure) method. The in vitro results of RBALP were compared to in vivo relative Pb bioavailability to ascertain whether the changes in bioaccessibility correlated with the in vivo data. Although the in vivo Pb relative bioavailability (RB) in all soils except in MLA (Mount Lofty Acidic) revealed an increase (18%¿159%) in the presence of Zn, the in vitro RBALP bioaccessibility results indicated otherwise (1%¿38% decrease). In vivo RB of Pb in MLA declined by 37% in the presence of Zn. However, the RBALP in vitro bioaccessible Pb did not correlate with the relative bioavailabilities of Pb in the juvenile swine dosing experiment. Caution is therefore needed when predicting Pb bioavailability/bioaccessibility in the presence of metal mixtures. The literature contains much information on the correlation of metal and metalloid bioaccessibility with their bioavailability. There is, however, a paucity of studies investigating the effects of other metals on Pb and their IVIVC (in vitro and in vivo correlations). The current study addresses this knowledge gap by assessing in vivoand in vitro bioavailability of Pb in the presence of Zn.
|
|
|
2017 |
Kader M, Lamb DT, Wang L, Megharaj M, Naidu R, 'Zinc-arsenic interactions in soil: Solubility, toxicity and uptake', Chemosphere, 187 357-367 (2017) [C1]
© 2017 Elsevier Ltd Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not w... [more]
© 2017 Elsevier Ltd Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg-1) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R2 = 0.84, p < 0.01) in the presence of Zn in the whole dataset, whereas Zn and Zn2+ activity in pore-water was reduced significantly only in the two alkaline soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p < 0.05) by As in whole dataset. However, an additive response was observed mostly except acidic MG soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0¿80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils.
|
|
|
2016 |
Lamb DT, Kader M, Wang L, Choppala G, Rahman MM, Megharaj M, Naidu R, 'Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil', ENVIRONMENTAL SCIENCE & TECHNOLOGY, 50 13062-13069 (2016) [C1]
|
|
|
2016 |
Abbasi S, Lamb DT, Palanisami T, Kader M, Matanitobua V, Megharaj M, Naidu R, 'Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake', Chemosphere, 144 1421-1427 (2016) [C1]
© 2015 Elsevier Ltd. Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contami... [more]
© 2015 Elsevier Ltd. Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems.
|
|
|
2016 |
Xia Q, Peng C, Lamb D, Mallavarapu M, Naidu R, Ng JC, 'Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction', Chemosphere, 147 444-450 (2016) [C1]
© 2015 Elsevier Ltd. Recent decades have seen a growing popularity of in vitro bioaccessibility being utilised as a screening tool in human health risk assessment. However the exi... [more]
© 2015 Elsevier Ltd. Recent decades have seen a growing popularity of in vitro bioaccessibility being utilised as a screening tool in human health risk assessment. However the existing bioaccessibility studies only focus on single contaminant. Considering human are likely to ingest multi-contaminants, these contaminants could interact within human gastrointestinal tract which may lead to an increase or decrease in bioaccessibility. In this study, seven different types of soil were spiked with arsenic (As) or cadmium (Cd) and aged for one year. The effects of soil properties on the bioaccessibility were examined. Moreover, the interaction between As and Cd in simulated human digestive system was studied by mixing As-spiked soil with Cd-spiked soil of the same type during bioaccessibility test. Results shows the bioaccessibility of As ranged from 40 ± 2.8 to 95 ± 1.3% in the gastric phase and 16 ± 2.0 to 96 ± 0.8% in the intestinal phase whilst a significant difference was observed between Cd gastric bioaccessibility (72 ± 4.3 to 99 ± 0.8%) and intestinal bioaccessibility (6.2 ± 0.3 to 45 ± 2.7%). Organic carbon, iron oxide and aluminium oxide were key parameters influencing the bioaccessibility of As (gastric and intestinal phases) and Cd (intestinal phase). No interactions between As and Cd during bioaccessibility test were observed in any soils, which indicates As and Cd may age independently and did not interact while being solubilised during bioaccessibility test. Thus additive effect may be proposed when estimating the bioaccessibility of mixtures of independently-aged As and Cd in soils.
|
|
|
2016 |
Kader M, Lamb DT, Wang L, Megharaj M, Naidu R, 'Predicting copper phytotoxicity based on pore-water pCu', ECOTOXICOLOGY, 25 481-490 (2016) [C1]
|
|
|
2016 |
Xia Q, Peng C, Lamb D, Kader M, Mallavarapu M, Naidu R, Ng JC, 'Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method', CHEMOSPHERE, 154 343-349 (2016) [C1]
|
|
|
2016 |
Kader M, Lamb DT, Mahbub KR, Megharaj M, Naidu R, 'Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions', ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 23 15460-15470 (2016) [C1]
|
|
|
2016 |
Wang L, Fang C, Cheng Y, Lamb D, Chen Z, Megharaj M, Naidu R, 'A practical way to make solid-state reference electrodes', Journal of Bioanalytical Techniques, 1 1-5 (2016)
|
|
|
2016 |
Wang L, Cheng Y, Lamb D, Chen Z, Lesniewski P, Mallavarapu M, Naidu R, 'Simultaneously determining multi-metal ions using an Ion Selective Electrode array system', Environmental Technology & Innovation, 6 165-176 (2016) [C1]
|
|
|
2016 |
Lamb DT, Kader M, Ming H, Wang L, Abbasi S, Megharaj M, Naidu R, 'Predicting plant uptake of cadmium: validated with long-term contaminated soils', ECOTOXICOLOGY, 25 1563-1574 (2016) [C1]
|
|
|
2016 |
Kader M, Lamb DT, Megharaj M, Naidu R, 'Sorption parameters as a predictor of arsenic phytotoxicity in Australian soils', Geoderma, 265 103-110 (2016) [C1]
© 2015 Elsevier B.V. Arsenic (As) is a mobile and ecotoxic metalloid that is of serious concern to the environment. In this study, As phytotoxicity was studied using a dose-respon... [more]
© 2015 Elsevier B.V. Arsenic (As) is a mobile and ecotoxic metalloid that is of serious concern to the environment. In this study, As phytotoxicity was studied using a dose-response approach for seven contrasting soils considering 3 end-points (shoot biomass, root elongation and chlorophyll content) and focusing on predictors of toxicity. Root elongation study was carried out for 4days using both Cucumis sativus L. (cucumber) and Triticum aestivum L. (wheat) and shoot end-points with a 4week a pot study using cucumber only. Root elongation of cucumber was a substantially less sensitive indicator to As than data from the 4weeks pot study. Effective concentrations (50%)(EC50) from cucumber root elongation studies were overall 1.6 times higher than the 4week shoot data. Cucumber was however considerably more sensitive to wheat. Given the large discrepancy in phytotoxicity end points for 7 soils, root elongation data for ecotoxicological assessment should be treated with some caution. Arsenic phytotoxicity was strongly related to the sorption constants of each of the seven soils in our study. Both root elongation and shoot data were related strongly to Freundlich partitioning constants (Kf) (L/kg). Wheat and cucumber root elongation had R2 values 0.90 and 0.91 respectively, while cucumber shoot data was 0.79. The Kf values were related to soil pH and also EC50 data and, thus, shows that As phytotoxicity in our study was primarily controlled by sorption reactions. The rate of As bioaccumulation to cucumber shoots depended heavily on the soil under consideration. Chlorophyll and carotenoid content of cucumber shoots increased with As content in 3 soils and decreased in other soils.
|
|
|
2016 |
Ming H, Naidu R, Sarkar B, Lamb DT, Liu Y, Megharaj M, Sparks D, 'Competitive sorption of cadmium and zinc in contrasting soils', Geoderma, 268 60-68 (2016) [C1]
© 2016 Elsevier B.V. The sorption behavior of cadmium (Cd(II)) and zinc (Zn(II)) on two virgin soils with different pH levels was studied using single metal and competitive dual m... [more]
© 2016 Elsevier B.V. The sorption behavior of cadmium (Cd(II)) and zinc (Zn(II)) on two virgin soils with different pH levels was studied using single metal and competitive dual metal systems. In the single metal system, Zn exhibited a greater affinity for the alkaline soil, as indicated by the Langmuir constant (KL = 8.85 L/kg) compared with Cd (KL = 1.79 L/kg). However, much less sorption of both Zn (KL = 0.19 L/kg) and Cd (KL = 0.07 L/kg) was observed in the acidic soil. The competitive sorption data were modeled using two-metal Freundlich and Langmuir functions. The competition for metal sorption occurred in the alkaline soil only at a higher concentration of the competing metals, whereas the effect was significant even at lower concentrations in the acidic soil. The cumulative amount of both metals sorbed in the soil was similar to that of single metal systems in the studied concentration range, demonstrating that the number of sites available for sorption remained constant irrespective of the competition. This study indicated that Cd might be more mobile in a mixed-metal system than in a single-metal scenario and thus poses a serious ecotoxicological threat. This study is important for assessing the risks and developing management strategies for multiple heavy metal contaminated soils.
|
|
|
2015 |
Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T, 'Influence of ageing on lead bioavailability in soils: a swine study', Environmental science and pollution research international, 22 8979-8988 (2015) [C1]
|
|
|
2015 |
Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T, 'Using soil properties to predict in vivo bioavailability of lead in soils', CHEMOSPHERE, 138 422-428 (2015) [C1]
|
|
|
2015 |
Wang L, Yang D, Lamb D, Chen Z, Lesniewsk PJ, Mallavarapu M, Naidu R, 'Application of mathematical models and genetic algorithm to simulate the response characteristics of an ion selective electrode array for system recalibration', Chemometrics and Intelligent Laboratory Systems, 144 24-30 (2015) [C1]
|
|
|
2015 |
Kader M, Lamb DT, Correll R, Megharaj M, Naidu R, 'Pore-water chemistry explains zinc phytotoxicity in soil', Ecotoxicology and Environmental Safety, 122 252-259 (2015) [C1]
© 2015 Elsevier Inc. Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptor... [more]
© 2015 Elsevier Inc. Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Zn<inf>pw</inf>) and free zinc (Zn<sup>2+</sup>) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50<inf>pw</inf> was 450 and 79.2µM for Zn<inf>pw</inf> and Zn<sup>2+</sup>, respectively. Total added Zn, soil pore water pH (pH<inf>pw</inf>) and dissolve organic carbon (DOC) were the best predictors of Zn<inf>pw</inf> and Zn<sup>2+</sup> in pore-water. The EC10 (total loading) values ranged from 179 to 5214mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pH<inf>ca</inf>, although pH<inf>w</inf> and pH<inf>pw</inf> were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC.
|
|
|
2015 |
Wang L, Liu E, Cheng Y, Bekele DN, Lamb D, Chen Z, et al., 'Novel methodologies for automatically and simultaneously determining BTEX components using FTIR spectra', Talanta, 144 1104-1110 (2015) [C1]
© 2015 Elsevier B.V. This study introduced a patented novel methodological system for automatically analysis of Fourier Transform Infrared Spectrometer (FTIR) spectrum data locate... [more]
© 2015 Elsevier B.V. This study introduced a patented novel methodological system for automatically analysis of Fourier Transform Infrared Spectrometer (FTIR) spectrum data located at 'fingerprint' region (wavenumber 670-800 cm-1), to simultaneously determinate multiple petroleum hydrocarbons (PHs) in real mixture samples. This system includes: an object oriented baseline correction; Band decomposition (curve fitting) method with mathematical optimization; and Artificial Neural Network (ANN) for determination, which is suitable for the characteristics of this IR regions, where the spectra are normally with low signal to noise ratio and high density of peaks. BTEX components are potentially lethal carcinogens and contained in many petroleum products. As a case study, six BTEX components were determinate automatically and simultaneously in mixture vapor samples. The robustness of the BTEX determination was validated using real petroleum samples, and the prediction results were compared with gas chromatography-mass spectrometry (GC-MS).
|
|
|
2014 |
Lamb DT, Venkatraman K, Bolan N, Ashwath N, Choppala G, Naidu R, 'Phytocapping: An alternative technology for the sustainable management of landfill sites', Critical Reviews in Environmental Science and Technology, 44 561-637 (2014) [C1]
|
|
|
2013 |
Choppala G, Bolan N, Lamb D, Kunhikrishnan A, 'Comparative sorption and mobility of Cr(III) and Cr(VI) species in a range of soils: Implications to bioavailability topical collection on remediation of site contamination', Water, Air, and Soil Pollution, 224 (2013) [C1]
The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two env... [more]
The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two environmentally important Cr species [Cr(III) and Cr(VI)] was examined using batch sorption, and the data were fitted to Langmuir and Freundlich adsorption isotherms. The effects of soil properties such as pH, CEC, organic matter (OM), clay, water-extractable SO42- and PO43-, surface charge, and different iron (Fe) fractions of 12 different Australian representative soils on the sorption, and mobility of Cr(III) and Cr(VI) were examined. The amount of sorption as shown by K f was higher for Cr(III) than Cr(VI) in all tested soils. Further, the amount of Cr(III) sorbed increased with an increase in pH, CEC, clay, and OM of soils. Conversely, the chemical properties of soil such as positive charge and Fe (crystalline) had a noticeable influence on the sorption of Cr(VI). Desorption of Cr(VI) occurred rapidly and was greater than desorption of Cr(III) in soils. The mobility of Cr species as estimated by the retardation factor was higher for Cr(VI) than for Cr(III) in all tested soils. These results concurred with the results from leaching experiments which showed higher leaching of Cr(VI) than Cr(III) in both acidic and alkaline soils indicating the higher mobility of Cr(VI) in a wide range of soils. This study demonstrated that Cr(VI) is more mobile and will be bioavailable in soils regardless of soil properties and if not remediated may eventually pose a severe threat to biota. © 2013 Springer Science+Business Media Dordrecht.
|
|
|
2013 |
Lamb DT, Matanitobua VP, Palanisami T, Megharaj M, Naidu R, 'Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite', ENVIRONMENTAL SCIENCE & TECHNOLOGY, 47 4670-4676 (2013) [C1]
|
|
|
2012 |
Lamb DT, Heading S, Bolan N, Naidu R, 'Use of Biosolids for Phytocapping of Landfill Soil', WATER AIR AND SOIL POLLUTION, 223 2695-2705 (2012) [C1]
|
|
|
2012 |
Lamb DT, Naidu R, Ming H, Megharaja M, 'Copper phytotoxicity in native and agronomical plant species', ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 85 23-29 (2012) [C1]
|
|
|
2012 |
Ming H, He W, Lamb DT, Megharaj M, Naidu R, 'Bioavailability of lead in contaminated soil depends on the nature of bioreceptor', ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 78 344-350 (2012) [C1]
|
|
|
2011 |
Murtaza G, Haynes RJ, Naidu R, Belyaeva ON, Kim K-R, Lamb DT, Bolan NS, 'Natural Attenuation of Zn, Cu, Pb and Cd in Three Biosolids-Amended Soils of Contrasting pH Measured Using Rhizon Pore Water Samplers', WATER AIR AND SOIL POLLUTION, 221 351-363 (2011) [C1]
|
|
|
2011 |
Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW, 'Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils', Journal of Hazardous Materials, 185 549-574 (2011) [C1]
As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, m... [more]
As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. © 2010 Elsevier B.V.
|
|
|
2010 |
Lamb DT, Ming H, Megharaj M, Naidu R, 'Phytotoxicity and Accumulation of Lead in Australian Native Vegetation', ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 58 613-621 (2010)
|
|
|
2010 |
Lamb DT, Ming H, Megharaj M, Naidu R, 'Relative Tolerance of a Range of Australian Native Plant Species and Lettuce to Copper, Zinc, Cadmium, and Lead', ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 59 424-432 (2010)
|
|
|
2009 |
Lamba DT, Ming H, Megharaj M, Naidu R, 'Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils', JOURNAL OF HAZARDOUS MATERIALS, 171 1150-1158 (2009)
|
|
|
2005 |
Burton ED, Phillips IR, Hawker DW, Lamb DT, 'Copper behaviour in a Podosol. 1. pH-dependent sorption-desorption, sorption isotherm analysis, and aqueous speciation modelling', Australian Journal of Soil Research, 43 491-501 (2005)
The effects of pH and Cu loading on the solid/solution partitioning of Cu in a Podosol from south-east Queensland, Australia was examined. Sorption-desorption of Cu exhibited maxi... [more]
The effects of pH and Cu loading on the solid/solution partitioning of Cu in a Podosol from south-east Queensland, Australia was examined. Sorption-desorption of Cu exhibited maximum linear distribution coefficients (KD) at approximately pH 5. Observed decrease in KD values at pH >5 was attributed to increased solubility of native dissolved organic carbon (DOC) at higher pH and subsequent formation of non-sorbing Cu-DOC complexes. Speciation modelling with the MINTEQA2 code indicated that >90% of aqueous Cu was present as Cu-DOC complexes at pH >5.5. The effect of Cu loading was examined with sorption isotherm analysis at pH 5 using solid:solution ratio approaches that were both constant (1:2 and 1:10) and variable. As the solid:solution ratio increased, the proportion of Cu sorbed decreased due to the formation of Cu-DOC complexes. However, this effect was negligible once these Cu-DOC complexes were accounted for via free Cu 2+ sorption isotherms. This indicated that Cu2+ sorption at concentrations <0.08 mg/L was described by a KD value of approximately 3000 L/kg. Despite this relatively high KD value for Cu2+ sorption, the results indicate that Cu-DOC complexes significantly enhance Cu solubility in soils high in DOC. © CSIRO 2005.
|
|
|
2005 |
Burton ED, Phillips IR, Hawker DW, Lamb DT, 'Copper behaviour in a Podosol. 2. Sorption reversibility, geochemical partitioning, and column leaching', Australian Journal of Soil Research, 43 503-513 (2005)
The sorption-desorption and leaching behaviour of Cu in a Podosol from south-east Queensland, Australia, was examined. Copper sorption was described by a linear distribution coeff... [more]
The sorption-desorption and leaching behaviour of Cu in a Podosol from south-east Queensland, Australia, was examined. Copper sorption was described by a linear distribution coefficient at low sorption levels (KDCa¿0) of 481 L/kg and a sorption capacity (CS,Max) of 382 mg/kg. Selective removal of soil organic matter reduced these values by approximately 95%, indicating that Cu was sorbed predominantly to soil organic matter. The KDCa¿0 and CS,Max values from Cu desorption experiments were 934 L/kg and 516 mg/kg, respectively, which indicates that sorption was not fully reversible. This irreversibility was related to aqueous Cu speciation (modelled with MINTEQA2), showing that aqueous complexes between Cu and dissolved organic carbon (DOC) comprised 28.3-72.8% and 21.3-45.4% of aqueous Cu in the sorption and desorption experiment, respectively. Sorption irreversibility was not evident when the corresponding data was presented as free Cu2+ isotherms. Both sorption and desorption experiments with free Cu2+ <0.2 mg/L were described by a KDCa¿0 value of approximately 3000 L/kg. Sequential extraction of sorbed Cu indicated that at low concentrations, sorption occurred primarily via specific interactions, with non-specific sorption becoming increasing important at higher concentrations. Desorption of Cu in a column leaching experiment was attributable to exchange of sorbed Cu2+ with Na+. Leaching with a DOC solution of pH 7 and 135 mg/L greatly enhanced Cu mobility due to the formation of aqueous Cu-DOC complexes. © CSIRO 2005.
|
|
|
2004 |
Phillips IR, Lamb DT, Hawker DW, Burton ED, 'Effects of pH and salinity on copper, lead, and zinc sorption rates in sediments from Moreton Bay, Australia', Bulletin of Environmental Contamination and Toxicology, 73 1041-1048 (2004)
|
|
|