Defence Priority
Professor Vijay Varadharajan • Cyber and IT Security

Addressing the security and trust challenges in distributed systems

The Advanced Cyber Security Engineering Research Centre (ACSRC) research primarily aims to address the challenges that arise in the design and analysis of secure and trusted systems in a heterogeneous distributed environment. This involves distributed systems, networks, Internet of Things (IoT), software defined architectures, mobile devices and industrial control systems.

Professor Behdad Moghtaderi • Energy Generation and Storage

Advanced propulsion systems

Our project aims to verify the working principle of an advanced propulsion system that combines hydrodynamic cavitation and pyroelectric power generations into an integrated unit.

Professor Victoria Haskins • Human Factors

ANZAC Her story: understanding our past and the impact of war

This research project explores the history of Australian women during World War I, and their diverse personal stories of war, drawing on a wide range of historical records and sources.

Dr Marc Adam • Autonomous Systems

Biosensor devices that detect human vital signs

Biosensors, Cognition And Affect In Human-Computer Interaction. Our research is exploring the latest in biosensors—devices that detect human vital signs, such as heart rate and skin conductance.

Dr Rohan Stanger • Material Sciences and Manufacturing

Coal to Carbon Fibres and Foams

Dr Stanger’s work revolves around the utilisation (and preparation) of coal. This transformation of coal into valued feed materials and higher value carbon products has led to active projects on the manufacture of carbon fibre and specialty foam, which could have a range of military applications.

Associate Professor Jamil Khan • Communications, Electronics and Digital Tech

Cognitive internet of things networks for Defence cyber physical systems

Our research concentrates on the design novel techniques of agile, wireless Internet of Things (IoT) networks that can operate in congested and hostile transmission conditions to deliver information to humans and other cyber entities.

Professor Scott Brown & Associate Professor Ami Eidels • Enhanced Human Performance and Protection

Cognitive workload for personnel selection

We use state-of-the-art mathematical analysis techniques and experimental measurement tools to accurately and objectively assess operator performance.

Professor Behdad Moghtaderi • ADF Operation and Sustainment

Containerised chemical-looping-based air separation technology

Containerised Chemical-Looping-Based Oxygen Plants for Field Hospitals and Hospital Ships

Dr Brett Turner • Material Sciences and Manufacturing

Contaminated site characterisation and remediation (PFAS)

Contaminated site characterisation and remediation (e.g PFAS); environmental analysis of explosives and chemical warfare residues

Dr Andrea Coda • Material Sciences and Manufacturing

Customised Footwear Solutions to prevent costly lower limb complications

Australia is facing an unsustainable and evergrowing burden of lower-limb complications. Early intervention is the gold standard towards prevention of costly lower-limb pathologies such as arthritis and diabetic ulcerations.

Associate Professor Jinsong Huang • Material Sciences and Manufacturing

Damage probability of protective structures against earth penetration weapons

Our research is studying the damage probability of deeply buried protective structures against earth-penetration weapons based on random field theory, experimental studies and numerical simulations that consider the inherently heterogeneous nature of earth materials.

Associate Professor Wayne Reynolds • International Security

Defending the Anglosphere: Australia and Global Power

Our project is analysing the settings of strategy (from the year 1783 to 2020) involving the broad interrelationship between Australian trade policy, industrial capability, defence posture and expeditionary warfare.

Professor Behdad Moghtaderi • Enhanced Human Performance and Protection

Delivering a compact, lightweight and battery operated atmospheric water generator

This project aims at advancing the development of a compact and lightweight battery-operated unit for production of water (4 litres per day) from atmospheric moisture.

Associate Professor Galina Mirzaeva • Material Sciences and Manufacturing

Delivering a high quality variable speed drive for unearthed neutral systems

For human safety, electrical systems are required to have neutral wire connected to earth. In some applications (ships, aircrafts, and underground operations) neutral cannot be earthed, causing problems of undetected faults and dangerous potentials. This research has developed a high quality variable speed drive for electric motors, which also provides increased safety and instant fault detection in unearthed neutral systems.

Professor Rohan Walker • Enhanced Human Performance and Protection

Delivering enhanced training platforms for Defence personnel

Provide advanced objective biometrically based assessment methodologies to capture how stress, attention and cognitive load impede decision making ability.

Associate Professor Anna Giacomini • Material Sciences and Manufacturing

Dynamic Impact and Fragmentation

Dynamic impact and fragmentation are highly complex phenomena. Members of the Priority Research Centre for Geotechnical Science and Engineering have been conducting world-class research on the topic applied to rockfall engineering.

Professor Andrei Lyamin • Material Sciences and Manufacturing

Efficient Tools or Analysis and Design of Military Geotechnical Structures

To develop methods and software that can efficiently assess the bearing capacity and factor of safety of civil and military infrastructure such as tunnels, roads, bunkers and trenchers.

Professor Geoffrey Evans • Material Sciences and Manufacturing

Emerging Persistent Contaminants (eg. PFAS), Hydrocarbons and Heavy Metal Contaminations

Ozofractionative Catalyzed Reagent Addition (OCRA) is a process in which ozone microbubbles are sparged through EPCimpacted water to facilitate gas-liquid interface partitioning of dissolved EPCs into a foam fraction. The low volume of concentrate can then be destroyed. Our research is focused on optimisation and source speciation.

Associate Professor Galina Mirzaeva • Material Sciences and Manufacturing

Energy efficient hybrid electric vehicles with acoustic signature suppression

Our research has redesigned the traditional fuel-driven propulsion system to include pure electric and hybrid electric modes.

Professor Mark Stewart • Material Sciences and Manufacturing

Explosive and ballistic protection

Explosive and Ballistic Protection for Defence Infrastructure. We provide risk-based safety advice on the siting of explosive ordnance, improvised explosive device reliability and counter-measures, force protection and weaponeering.

Professor Behdad Moghtaderi • Material Sciences and Manufacturing

Fires and explosion countermeasures in confined spaces

This includes fixed structures such as defence buildings, bunkers, aircraft shelters, command posts and ammunition depots, as well as the critical components of weapon platforms such as submarines (battery and engine rooms), ships (engine room), tanks and other armoured personnel carriers (ammunition storage and engine compartments).

Dr Bin Li • Space Technologies

Governance of the Military uses of Space Technologies

This research is focused on the global governance of military uses of space technologies from the legal perspective and provides legal and policy advice to governments to ensure that their space programs and activities are aligning with international rules.

Professor Paul Dastoor • Material Sciences and Manufacturing

Graphene fabrication

As a material with high potential for revolutionising defence capabilities in the next decade, graphene fabrication is of interest in the military domain. We have developed a mechanism for the formation of high-quality graphene at less than half the temperature typically required (400°C vs 1000°C) using a range of liquid carbon sources trapped in a polymer matrix.

Professor Behdad Moghtaderi • Hypersonics

Hypersonic research

The ability to produce airflow at stagnation temperatures and pressures associated with hypersonic flight is vital in the design of a range of weapons, particularly for air strike and missile defence.

Professor Andrew Boyle • Advanced Sensors and Intelligence

Implantable wireless pressure sensor technology

The human cardiovascular system functions normally or abnormally based on pressure and flow within blood vessels and cardiac chambers. The future of cardiovascular medicine will see a reliance on implantable pressure sensors that can detect, and wirelessly report, pressures within chambers to external signal receivers, and then to treating clinicians.

Associate Professor Lawrence Ong • Cyber and IT Security

Information Theoretic Secure Communications

Our research is testing a novel way of securing data communications using information cached at devices to camouflage data.

Professor Shin-Chan Han • Space Technologies

Investigation of mass distribution (water, ice and solid earth) caused by climate change

Investigation of mass distribution (water, ice, and solid Earth) caused by climate change and natural hazards by analysing spacecraft radar and laser ranging, accelerometer, and GNSS instruments. Development of the high-precision cryogenic gravimetric sensor. Detection of the Earth's gravity has implication to satellite trajectory, positioning, guidance and navigation.

Dr Klaus Thoeni and Associate Professor Anna Giacomini • Autonomous Systems

Machine-Terrain interaction

Our project analyses the performance of autonomous systems on various ground conditions using physical tests and virtual prototyping.

Professor Brett Neilan • Material Sciences and Manufacturing

Manufacturing and sensing of environmental biotoxins

Microbial toxins threaten human health, while other natural products from these extremophiles have beneficial medicinal and industrial applications.

Professor Colin Waters • Space Technologies

Mathematics models and experimental data used to predict and mitigate space weather impacts

Space Weather impacts all technology in space and the ionosphere including HF radar surveillance, space situational awareness, satellite performance and operations and humans in space. Mathematical models in concert with experimental data are used to predict and mitigate adverse space weather conditions and impacts.

Professor Pablo Moscato • Advanced Sensors and Intelligence

Memetic Algorithms and Memetic Computing

Thirty years ago, Professor Moscato created an entirely new field of computer science known as “memetic algorithms”—labelled one of the greatest research frontiers in the combined fields of mathematics, computing and engineering.

Professor Behdad Moghtaderi • Energy Generation and Storage

Minimising energy loss

Our project aims at advancing the implementation of the GRANEX heat engine to power applications on board ships and submarines and in forward operating bases and field hospitals.

Professor Behdad Moghtaderi • ADF Operation and Sustainment

Mobile atmospheric water generators

Containerised Desiccant-Based Mobile Atmospheric Water Generator

Dr Scott Imig • Human Factors

Monitoring, instruction, coaching and effective instructional practices

Conducted in collaboration with schools, businesses and the United States Marine Corps, this project aims to study and develop quality coaching and supervision practices to improve the quality of teaching and learning within organisations.

Associate Professor Jeffrey Hogan • Advanced Sensors and Intelligence

Multidimensional, multichannel signal and image processing

This mathematics research project aims to construct tools for signal and image processing.

Dr Christopher Williams • Enhanced Human Performance and Protection

Musculoskeletal injuries and associated disease

Our research examines potential personal, social, occupational and health factors related to the onset and persistence of musculoskeletal pain and injuries.

Professor Thomas Nann • Material Sciences and Manufacturing

Nanomaterials for Energy Storage

In the Nann research group, we fabricate and characterise new, functional nanomaterials for the purpose of creating innovative energy storage solutions. Our focus is on luminescent, magnetic (multiferroic), dielectric, upconverting, Raman active, and nanomaterials with complex nanoarchitectures.

Dr Karen Blackmore and i3Lab team • Enhanced Human Performance and Protection

Optimisation of interactions between humans, systems and data

Enhanced Human Performance Through Optimisation Of Interactions Between Humans, Systems, And Data

Dr Mason Crumpton • Material Sciences and Manufacturing

Phase field finite element methods

Our research project is focused on the development of an efficient numerical simulation method, known as the phase field finite element method, for modelling the propagation of fractures in brittle-elastic materials.

Professor Ayayan Vinu • Material Sciences and Manufacturing

Pioneering research for energy, environment and sensing

Our centre is actively working on the development of advanced magnetic materials for magnetic sensors and microwave radar absorption of magnetic materials.

Professor Paul Dastoor • Advanced Sensors and Intelligence

Platform for diverse detection and Defence preparedness

Biosensors offer an opportunity to monitor soldier physical and mental readiness and the state of their environments in real time. They can detect a wide variety of potential problems as they arise, enabling troops to act swiftly and appropriately. Drawing on our capabilities in functional roll-to-roll (R2R) printing, our printed biosensor platform can be tailored to meet a range of needs, providing a pathway for reliable, large-scale, low-cost production.

Dr Igor Chaves • Material Sciences and Manufacturing

Prediction for safety of maritime assets

Our research investigates complex, detrimental lifecycle factors that influence the long-term structural integrity of maritime assets, such as Australian defence vessels.

Professor Rob Melchers • Material Sciences and Manufacturing

Prediction of corrosion and deterioration of civil and Defence assets

The Centre for Infrastructure Performance and Reliability deals with practical aspects of marine and related corrosion, and with mathematical models based on physico-chemical bases to predict likely corrosion both short and long-term, including the possibility of microbiological influences.

Professor Paul Dastoor • Communications, Electronics and Digital Tech

Printed Solar Panel

Printed solar cells offer a range of exciting deployment possibilities, including retractable solar farms and wearable solar. While printed solar technology is not new, viable real-world applications of this technology are yet to be realised. We are the first group in Australia, and one of few globally, to undertake a commercial-scale pilot of printed solar.

Professor Behdad Moghtaderi • Material Sciences and Manufacturing

Pyroelectric energy

The aim of our project is to advance the material science and engineering that underpins the direct conversion of temporal changes in the ambient temperature to small quantities of electrical power. The resulting power can be used for ‘fit and forget’ self-powered wireless autonomous devices, wireless autonomous sensor networks and low-power electronic devices.

Professor Behdad Moghtaderi • Material Sciences and Manufacturing

Pyroelectric energy harvesting

The principal vision for this project is to determine the fundamental science underpinning the functionalisation of Portland cements for pyroelectric energy harvesting from concrete-based structures such as aircraft shelters, ports, command posts and ammunition depots. Pyroelectric energy harvesting allows for the direct conversion of fluctuating ambient temperature into electricity

Dr Andrea Coda • Enhanced Human Performance and Protection

Real-time Human Performance Monitoring using our Internationally Validated EHealth Platform

Our validated real-time clinical approach will enable Australian Defence Force (ADF) staff and clinicians to monitor multiple health outcomes anytime and anywhere with unprecedented accuracy and objectivity.

Associate Professor Peter Stanwell • Enhanced Human Performance and Protection

Researching traumatic brain injury in Military personnel

Since 2000, the Defense and Veterans Brain Injury Center, USA has identified more than 280,000 cases of traumatic brain injury (TBI) in US service members, many resulting from combat blast exposure.

Dr Richard Oloruntoba • Cyber and IT Security

Responsive supplier networks and organisational design (ReSSNOD)

ReSSNOD studies and provides solutions to structural, organisational and human challenges in supplier and distribution networks in commercial, humanitarian, and other contexts. The team seeks engagement with Defence industries and further engagement with the SMEs that support the Defence sector in the Hunter and nationwide.

Professor Paul Dastoor • Material Sciences and Manufacturing

Scanning helium microscope

The Scanning Helium Microscope (SHeM) is the world's first electrically inert microscope. Produced by our research team in collaboration with key partners, the microscope uses neutral helium to image organic and delicate materials with zero damage.

Professor Behdad Moghtaderi • Material Sciences and Manufacturing

Smart anechoic materials for acoustic signature control

Anechoic materials fitted to submarines and other similar platforms, such as torpedoes, can absorb and scatter acoustic energy, therefore reducing the probability of detection by an enemy's active sonars.

Professor Behdad Moghtaderi • Material Sciences and Manufacturing

Stealth Generators

Our project focuses on advancing current research aimed at developing stealth petrol-powered mini generators (~1-10 kW) with noise and heat signatures below those of the ambient levels. The application of this technology is in the forward operating bases, where excessive noise or heat emitted from mini generators significantly increases the enemy's ability to detect and locate the base

Professor Francis Kay-Lambkin • Human Factors

Support for serving and ex-serving Defence personnel

The mental health and well-being of serving and ex-serving Australian Defence Force (ADF) personnel is of paramount importance, with a recent national audit indicating mental health disorders are a major cause of reduced quality of life for many members, with direct impacts on their families. The most common mental health concerns are depression, anxiety, post-traumatic stress, substance use, and suicide, with comorbidity between conditions common.

Associate Professor Carole James • Human Factors

Workplace Health and Wellbeing – supporting organisations to create and maintain healthy workplaces

The health of employees is significantly influenced by the characteristics of the workplace. Employees experience a range of physical and mental health conditions as a result of the competing demands of the workplace. Musculoskeletal injuries are common, together with obesity and mental health concerns.

The University of Newcastle acknowledges the traditional custodians of the lands within our footprint areas: Awabakal, Darkinjung, Biripai, Worimi, Wonnarua, and Eora Nations. We also pay respect to the wisdom of our Elders past and present.