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Finite element analyses of brick masonry subjected to in-plane concentrated static and dynamic loads are
carried out to study crack initiation and propagation during the failure process of unreinforced masonry
walls. The numerical model is firstly validated by the experimental tests by using the same materials
parameters and loading conditions. Then, the static and dynamic concentrated loads are applied to the
mortar joints and brick, respectively, and numerical simulations are used to compare the fracture char-
acteristics for these loads. In addition, a comparison of fracture mechanisms for the concentrated loads on
the mortar joint and brick is also given. Finally, the effect of dynamic pressure (Py,.x) on the failure mech-
anism of brick masonry is considered.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Brick masonry is an ancient building technique, and masonry
structures constitute a large portion of buildings around the world.
Such structures and buildings are sometimes required to withstand
exceptional dynamic loading resulting from accidental impact or
seismic activity (Mackerle, 2004). In addition, masonry is a com-
posite material made of brick units, which are usually made from
clay, and mortar joints. Many variables influence the mechanical
behaviour of masonry, such as the brick and mortar properties,
brick geometry, joint dimensions, and joint arrangement, which re-
sults in heterogeneous masonry material (Cecchi and Rizzi, 2001).
However, masonry was often assumed to be isotropic elastic in
early analyses (Wood, 1952; Rosenhaupt and Sokoal, 1965; Pande
et al,, 1989). The development of numerical techniques led to more
refined models that model bricks and joints separately and allow
for local failure inside three components (Lourenco and Rots,
1997; Ali and Page, 1998).

In terms of model scale, masonry structures can be modelled at
the micro-, meso- and macro- levels. For micro- and meso-scale
analyses, a detailed representation of bricks and mortar can be gi-
ven (Rots, 1991). In addition, using a grade of refinement scheme, a
structure modelled at the micro-scale or meso-scale could be set
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up for macro-scale analysis (Dhanasekar et al., 1985; Lofti and
Shing, 1991; Lourenco, 1996; Guinea et al., 2000; Massart et al.,
2005; Pina-Henriques and Lourenco, 2006; Shieh-Beygi and Pie-
truszczak, 2008). Usually, for large structures, an elastic and homo-
geneous material law is adopted for the masonry composite to
predict the deformations and structural displacements at low and
medium stress levels, whereas such an approximation is not suffi-
cient to assess masonry failures (Anthoine, 1997; Guinea et al,,
2000; Lourenco and Rots, 2000; Bigoni and Piccolroaz, 2004). Be-
cause tensile crack initiation and propagation always results from
existing micro-defects or fractures in the mortar, brick and mortar/
brick interface, the stress redistribution is then directly influenced
by the heterogeneity of the material at the meso-scale (Rosenhaupt
and Sokoal 1965; Page, 1983;Massart et al., 2005).

Furthermore, strain-rate effects in concrete or brick mortar are
induced by high-amplitude short-duration dynamic loads and are
thus important in design and analysis. In the past, many laboratory
experiments were carried out to investigate the performance of
masonry or concrete at high load or strain rate (Ross et al., 1989;
Yon et al., 1992; Tedesco et al., 1993; BazZant et al., 1995; Ross
et al., 1995; Gilbert et al. 2002). This yields general knowledge
about the effects of the strain rate on the strength and fracture
characteristics of concrete or masonry. In addition, many numeri-
cal analyses using the FEM have been conducted to determine
the stress distribution in specimens under different loading condi-
tions (Tedesco et al., 1989, 1991; Mackerle, 2000; Massart et al.,
2004; Milani et al. 2009). Essawy et al. (1985) reported a finite
element model to track the progress of cracking in a masonry wall.
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Burnett et al. (2007) developed a simplified discrete-crack finite
element modelling approach to model the performance of
unreinforced brickwork and blockwork masonry walls subject to
out-of-plane impacts. Furthermore, a particle model consisting in
a phenomenological discontinum approach was proposed by
Pina-Henriques and Lourenco (2006) to represent the microstruc-
ture of masonry components. Morris et al. (2006) reported the
combined finite element/discrete element to investigate the effect
of explosive and impact loading on geological media. However, few
of the models reported can actually capture the whole fracture pro-
cess due to dynamic loading of masonry as characterised by initi-
ation, propagation, and coalescence of microcracks. Therefore, the
performance of masonry walls subjected to concentrated impact
loadings has been poorly understood.

Many structures are built with brittle materials, such as rock,
concrete or masonry. It is now accepted that the failure mechanism
in brittle materials is controlled by crack initiation, propagation
and coalescence (Essawy et al., 1985; Tang and Kou, 1998). From
the viewpoint of damage mechanics, the non-linear behaviour of
quasi-brittle solids under loading is caused by progressive damage
of the microstructure (Ju et al.,1989; Massart et al., 2004). The
Realistic Failure Process Analysis (RFPA) Code, developed by Tang
(Tang, 1997; Tang et al., 2000), simulates the quasi-static fracture
process of rock and concrete using a meso-mechanical model.
When a concrete specimen is subjected to a shock or an explosion,
the material is subjected to various states of stress that yield differ-
ent failure modes. Near the impact location severe hydrostatic
compression is observed, while farther from the impact location
the material experiences compression with a moderate triaxial
state of stress. Finally, compressive wave reflection may occur
and can result in a tensile wave, which will interact with compres-
sive waves and produce spalling, i.e., tensile cracking induced by
wave interaction (Zhu et al. 2004).

The current paper presents a stain-rate-sensitive model for ma-
sonry failure based on damage mechanics to simulate the fracture
process of brick masonry subjected to static and dynamic (impact)
loading. For this numerical model, the brick masonry is assumed to
be a three-phase composite composed of brick, mortar joint and
interfaces between the brick and mortar joints. A constitutive
law, which is based on damage mechanics and considers the effect
of strain rate on strength, is proposed (Chau et al., 2004). Both the
maximum tensile strain criterion and Mohr-Coulomb criterion are
utilised as the damage threshold for mesoscopic elements. The
present model allows for nonlinear material characteristics and
progressive local cracking. The load is applied incrementally to
determine the response of the wall from the first crack through
to final failure.

The following section describes the materials used in this work
and the tests performed. Section 2 briefly presents the proposed
mechanism of this numerical model. Section 3 describes the model
setup and the numerically simulated results. Section 4 concludes
the paper.

2. Brief description of RFPAZ?

Briefly, the code Realistic Failure Process Analysis (RFPA2P)
(Tang, 1997) is a two-dimensional finite element code that can
simulate the fracture and failure process of quasi-brittle materials,
such as rock, concrete and masonry. To model the failure of a brit-
tle material, the medium is assumed to be composed of many mes-
oscopic rectangular elements of the same size. In the current study,
to capture the heterogeneity of masonry at the meso-level, the
mechanical properties of each phase, including the elastic modu-
lus, the strength and Poisson’s ratio, are all assumed to conform
to the Weibull distribution as defined by the following probability
density function (Weibull, 1951):

s =1 (L) " exp ()] 1)

where u is a given mechanical property (such as the strength or
elastic modulus); ug is the scale parameter; and m is the shape
parameter that defines the shape of the distribution function. In
the present study, the parameter m defines the degree of material
homogeneity and is thus referred to as the homogeneity index. As
the homogeneity index increases, the material becomes more
homogeneous. Each of the element material properties are different
and are specified according to the Weibull distribution, with four-
node iso-parametric elements being used in the finite element anal-
ysis. Elastic damage mechanics is used to describe the constitutive
law of the meso-scale elements, and the maximum tensile strain
criterion and the Mohr-Coulomb criterion are utilised as damage
thresholds (Zhu and Tang, 2002). In fact, the introduction of Weibull
function of mechanical properties of mesoscopic elements plays a
role as a bridge from Meso-scale damage of elements to Macro-
scale failure of material (Tang, 1997; Zhu and Tang, 2002). This ap-
proach of assigning material properties has been shown to be an
effective means of simulating the heterogeneity of rock and con-
crete. The influence of the homogeneity index (m) of the rock/con-
crete on the failure modes has been investigated in previous
publications (Tang, 1997; Zhu and Tang, 2002; Zhu et al., 2005).
In the current study, the effect of the homogeneity index of the
brick, mortar and the interface between them on the failure modes
of masonry structure is not considered.

2.1. Elastic damage constitutive law

In this model, the damage mechanics approach is employed to
model the mechanical behaviour of meso-scale elements. For each
element, the material is assumed to be linear elastic, isotropic and
damage-free before loading, with its elastic properties defined by
the elastic modulus and Poisson’s ratio. After the initiation of dam-
age, the elastic modulus of an element degrades monotonically as
the damage evolves and is expressed as follows (Zhu et al., 2004):

E=(1-D)E (2)

where D represents the damage variable; and E and E, are the elas-
tic modulus of the damaged and the undamaged material,
respectively.

The constitutive relationship of a mesoscopic element under
uniaxial tension is expressed as (Zhu and Tang, 2002; Zhu et al.,
2004):

0 &< &y
D= 1-f= eo<e<ey 3)
1 &> &y

where f; is the residual tensile strength, which is given as
fir = Mfio = ZEo&0; fio and 4 are the uniaxial tensile strength and
residual strength coefficients, respectively; &g is the strain at the
elastic limit, which can be called the threshold strain; and e, is
the ultimate tensile strain of the element at which the element
would be completely damaged. The ultimate tensile strain is de-
fined as &y, = neo, where M is the ultimate strain coefficient. Eq. (3)
can be expressed as (Zhu and Tang, 2002; Zhu et al., 2004):

0 &< &o
D={1-%0 go<g<éy (4)
1 &> &y

In addition, it is assumed that the damage of mesoscopic elements
in multiaxial stress conditions is also isotropic and elastic (Tang,
1997). Under multiaxial stress states, the element can still be dam-
aged in the tensile mode when the equivalent major tensile strain &
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Table 1
Model parameters (Riddington and Naom, 1994).
Constituent Property Value
Brick Young’s modulus, E (MPa) 22000
Poisson’s ratio, v 0.15
Compressive strength, (MPa) 61.0
Tensile strength, (MPa) 10.7
homogeneity index (m) 3

parameter to reflect the stress rate effect 4.27
on strength (A)

Mortar Young’s modulus, E (MPa) 8888
Poisson’s ratio, v 0.20
Compressive strength, (MPa) 14.5
Tensile strength, (MPa) 1.575
homogeneity index (m) 3

parameter to reflect the stress rate effect 1.02
on strength (A)

Shear strength, (MPa) 1.02
Tensile strength, (MPa) 0.523
homogeneity index (m) 3

Mortar/brick-mortar
interface

Table 2
Material parameters for indenter.

200 GPa

Compressive strength, (MPa) 1000 MPa
Poisson’s ratio, v 0.25

Young’s modulus, E (MPa)

exceeds the threshold strain ¢;y. The equivalent principal strain ¢ is
defined as (Zhu and Tang, 2002; Zhu et al., 2004):

E= (e + (&) + (&)’ (5)
where ¢, & and s are three principal strains and < > is a function

defined as follows:

Table 3
Numerically simulated results compared with laboratory test results.

x x>0
<x>={0 e (6)

The constitutive law of an element subjected to multiaxial stresses
can be easily obtained by substituting the equivalent strainé for the
strain € in Eqs. (3) and (4). The damage variable then becomes (Zhu
and Tang, 2002; Zhu et al., 2004):

0 &< &
D={1-%0 gq<E<éy (7)
1 &> &y

To simulate the damage of an element when it is under compres-
sive/shear, the Mohr-Coulomb criterion is chosen to be the second
damage threshold (Zhu and Tang, 2002; Zhu et al., 2004) according
to

1+sing

——03>fo0 8)

F=a 1—sing

where ¢, and o3 are the major and minor principal stresses, respec-
tively; f.o is the uniaxial compressive strength; and ¢ is the internal
friction angle of the mesoscopic element. This kind of damage is
called compressive/shear damage because the damage occurs when
the stress conditions of an element meet the Mohr-Coulomb crite-
rion. According to the Mohr-Coulomb criterion, when the element
is under uniaxial compression, the expression for the damage vari-
able D can be described as (Zhu and Tang, 2002; Zhu et al., 2004):

0 £< &y
D_{l’f;o £> &0 ®)

where 4 is the residual strength coefficient and equal tof,/fco otfi/fio
when the element is under uniaxial compression or tension. Previ-
ous work with the code (Zhu et al., 2004) has shown that, provided 4
is in the range 0 < 1 < 0.1, the effect of the constitutive parameters
on failure evolution is minor.

Batch Model setup and Numerically simulated Numerical simulated force-displacement Ultimate experimental test load (kN)
loading arrangement failure results curve and peak load (kN) (Riddington and Naom, 1994)
1 Distributed load - 480
B e o Peak load=485.4kN
¥’ f
£
i
E 200
N I M
2 Concentrated load 149
p p H
i
H
O
3 Concentrated load - 98.4

Vertical force (kN)

l_’.d

Peak load=102.2kN

0 1326 285 0975 53 6625 795 G276 106 1183 1325 1458 158 1723

Vortical displacoment (mm)




380 S.Y. Wang et al./ International Journal of Solids and Structures 49 (2012) 377-394

Displacement control

Case I: Static concentrated loading on
a mortar joint

Impact loading

#P

T
5
5 5
5|
:

Case III: Concentrated impact loading
on a mortar joint

Displacement control

Case II: Static concentrated loading on a

brick

Impact loading

Case I'V: Concentrated impact loading on

a brick

Fig. 1. Numerical model setups of four kinds of masonry tests: Case I. Static concentrated loading on a mortar joint; Case II. Static concentrated loading on a brick; Case III.
Concentrated impact loading on a mortar joint; Case IV. Concentrated impact loading on a brick.

When an element is in a multi-axial stress state and its stress
exceeds the Mohr-Coulomb criterion, damage occurs and the effect
of the other principal stresses should be considered. When the
Mohr-Coulomb criterion is met, the maximum principal strain
(maximum compressive principal strain) ey is calculated at the
peak value of maximum principal stress (maximum compressive
principal stress) according to (Zhu and Tang, 2002; Zhu et al,,
2005):

1+sing

1_sin(p03—/l(0'1 +02) (10

&0 = Elo ch +
For these conditions, the shear damage evolution is related only to
the maximum compressive principal strain, ¢;, which can be substi-
tuted for the uniaxial compressive strain in Eq. (9). Thus the damage
variable for multiaxial shear damage becomes (Zhu and Tang, 2002;
Zhu et al., 2004):

0 &1 < &

P (MPa)

1 1 1 >

f f t I
0 10 20 30 40

t (us)

Fig. 2. Applied dynamic impact compressive stress waves with Py, values of 3, 6
and 9 MPa.



S.Y. Wang et al. /International Journal of Solids and Structures 49 (2012) 377-394 381

In RFPA?P, the specified displacement (or load) is applied to the
specimen incrementally. If some elements are damaged in a par-
ticular step, their reduced elastic modulus at each stress or strain
level is calculated using the above damage variable D as well as
Eq. (2). Then the calculation is restarted under the current bound-
ary and loading conditions to redistribute the stresses in the spec-
imen until no new damage occurs. Finally the external load (or
displacement) is increased and is used as input for the next step
of the analysis. Therefore, the progressive failure process of a

brittle material subjected to gradually increasing static loading
can be simulated. A user-friendly pre- and post-processor is
integrated in RFPA?P to prepare the input data and display the
numerical results.

In addition, an Acoustic Emission (AE) technique is used to
monitor the cracking processes taking place in some portions of
the masonry structure (Carpinteri et al., 2004). In RFPAZP, the fail-
ure (or damage) of every element is assumed to be the source of an
acoustic event because the failed element must release its elastic

Fig. 3. Numerically simulated failure process of masonry due to concentrated load on a mortar joint (Shear stress distribution).
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energy stored during the deformation. Therefore, by recording the
number of damaged elements and the associated amount of energy
release, RFPAZP is capable of simulating AE activities, including the

AE event rate, magnitude and location. According to Tang and Kai-
ser (1998) the accumulative damage, D can be calculated by the
following Eq. (6):

Load (kN)
(<>}

0

H

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Vertical displacement (mm)

Fig. 4. Load-displacement behaviour of masonry due to concentrated load on a mortar joint.
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Fig. 5. AE counts and accumulated AE counts versus vertical displacement during the masonry failure process resulting from a concentrated load on a mortar joint.
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Fig. 6. Elastic energy release (ENR) and accumulated ENR versus vertical displacement during the masonry failure process because of the concentrated load on a mortar joint.
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where s is the number of calculation steps, ni is the damaged ele-
ments in the ith step and N is the total number of elements in the

(12)

Fig. 7. Numerically simulated failure process of masonry due to a concentrated load on a brick (shear stress distribution).
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Fig. 8. Load-displacement behaviour of masonry due to concentrated load on a brick.
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Fig. 9. AE counts and accumulated AE counts versus vertical displacement during the process of masonry failure due to concentrated load on a mortar joint.
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Fig. 10. Elastic energy release (ENR) and accumulated ENR versus vertical displacement during the process of masonry failure resulting from a concentrated load on a brick.
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model. In addition, when the element fails, the energy released is
calculated by Eq. (7) (Tang et al., 2007):

Wi :;—E(a% + 03 —2va,03)V, (13)
where i is the element number , W; is the released elastic strain en-
ergy, E is the elastic modulus, ¢; and o5 is the major and minor
principle stress, respectively, v is the Poisson ratio, and V is the ele-
ment volume (Tang et al., 2007). AE activity indicates the extent of
local damage in rock, which is directly associated with the evolution
and propagation of fractures. By recording the counts of all failed
elements and released energies when failure occurs, the AE phe-
nomena associated with the progressive failure process can be
simulated.

2.2. Strain-rate-dependent damage threshold

The above-mentioned constitutive law based on elastic damage
mechanics is independent of the strain rate. Based on a variety of
experimental results for granite, Zhao (2000) proposed that the
Mohr-Coulomb criterion is also applicable to dynamic loading con-
ditions if the increase in cohesion with the strain rate is taken into
account. The relation between dynamic uniaxial compressive
strength and the loading rate can be described with a semi-log for-
mula as follows (Zhao, 2000):

fea =A10g(fcd/fco) + feo (14)

where f is the dynamic uniaxial compressive strength (MPa); f is
the dynamic loading rate (MPa/s); f« is the quasi-brittle loading
rate (approximately 5 x 1072 MPa/s); and f is the uniaxial com-
pressive strength at the quasi-static loading rate. The parameter A
reflects the effect of strain rate on the dynamic strength. In this
investigation, the values of A for different materials are obtained
based on the assumption that A increases linearly with the uniaxial
compressive strength. In this respect, the strain rate effect on
strength can be indirectly taken into account in the previously de-
scribed constitutive law for the mesoscopic elements (Zhu and
Tang, 2002; Chau et al., 2004). It is note that, according to Zhao
(2000), this strain-rate-dependent damage law is applicable for
brittle rock. Considering the present research also focusing on the
brittle brick masonry, whose brittle properties can be verified by
the experimental and numerical results in Table 3, accordingly, it
is reasonable to assume the damage law (Zhao, 2000) is also appli-
cable to brittle brick masonry. Nevertheless, the further work will

Load (kN)
(2]

be carried out to evaluate this damage law (Zhao, 2000) to brittle
brick masonry, based on experimental tests.

In addition, mesh sensitivity is an important issue that can
influence the numerical results. Softening laws always induce
mesh dependency upon mesh refinement as a result of the loss
of well-posedness of the equilibrium boundary value problem.
Zhu et al. (2004) has discussed the effect of element size on the
numerically simulated results, by fixing the element size for the
static problem. Furthermore, rate dependent laws adopted in the
present model can actually be beneficial since rate dependency
can contribute to the decrease of the mesh dependency issue.

2.3. Finite element implementation

As described above, the masonry specimen is discretised into
rectangular four-noded elements (90,000 elements were typically
used). The equilibrium equations governing the linear dynamic re-
sponse of a system of finite elements can be expressed in the fol-
lowing form (Zhu and Tang, 2006):

MU + CU + KU =R, (15)

where M, C and K are the mass, damping, and stiffness matrices; R
is the vector of externally applied loads or unbalanced forces; and
U, U and U are the nodal displacement, velocity, and acceleration
vectors. A lumped mass analysis is assumed, where the structure
mass is the sum of the individual element mass matrices plus
additional concentrated masses that are specified at selected de-
grees of freedom. It is noted that Rayleigh damping is assumed,
i.e. C=oM + BK (Clough and Bathe 1972). Here « and f are damp-
ing factors. A direct step-by-step integration procedure is found
suitable for solving the problem in which a body is subjected to
a short duration impulse loading (Tedesco et al. 1991). Wilson 0
method of implicit time integration with a consistent mass formu-
lation is employed and for unconditionally stability we need to use
0 > 1.37, and usually we employ 0 = 1.4 in our numerical analysis
(Zhu and Tang, 2006).

For this kind of dynamic response problem, the maximum time
step is related to the wave speed in the material and the size of fi-
nite element. The maximum time step is selected such that the
stress wave cannot propagate further than the distance between
the element integration points within the time increment.

The above constitutive law for studying the failure of rock spec-
imens subjected to a variety of static stress conditions has been
validated and published elsewhere (Zhu et al., 2005; Wang et al,,

—=— Loading on brick

Loading on mortar joint ‘

0

o

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Vertical displacement (mm)

Fig. 11. Comparison of load-displacement behaviour of masonry due to a concentrated load on a mortar joint and brick.
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2006; Zhu and Tang, 2006; Wang et al., 2011). For the dynamic and compared to an available analytical solution in a previous
analysis part of the RFPA, the wave propagation in a one-dimen- study (Chau et al,, 2004). In this paper, further validation of the
sional prismatic bar subject to an axial loading was calculated failure process analysis is provided.

o

Fig. 12. Numerical simulated failure process of a masonry structure resulting from a concentrated impact load on a mortar joint (Pyax = 6 MPa) (Shear stress distribution).
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2.4. Static validation of numerical model

In order to validate the RFPA code to simulate the masonry
structure, the experimental results (Riddington and Naom, 1994)
obtained from wallettes of batches 1, 2 and 3 in Table 3 were used.
As the wallettes tested were 325.0 mm wide, 240.0 mm high and
49.0 mm thick (Riddington and Naom, 1994), the model is discre-
tised into 325 x 240 = 78,000 elements and the problem is simpli-
fied to a plane stress condition. Each complete brick comprises
105 x 30=3150 elements to represent the size of brick
(105.0 x 30.0 mm). The nominal tested joint thickness of 5.0 mm
was represented by five elements in the numerical model. For this
numerical model, the brick masonry is assumed to be a three-
phase composite composed of brick, mortar joints and their inter-
faces. The basic properties of the brick, mortar and the brick-mor-
tar interface are presented in Table 1 (Riddington and Naom,
1994). The strength and elastic modulus of the indenters in the
current models are given sufficiently high values such that they
do not deform plastically during the masonry failure process —
see Table 2.

It should be noted that, due to the heterogeneity of the material,
it is difficult to set up the exact same wall for every test - even in

AE counts (n)

04

0 25 50 75 100 125 150 175 200 225

laboratory tests under controlled conditions. Therefore, in the
current numerical model, the homogeneity index m is fixed to
generate almost the same wall in each case. The effect of varying
the parameter m for the masonry wall will be discussed in a sepa-
rate paper.

At the initial condition, the elements are elastic and their stres-
ses can be calculated using direct step-by-step explicit integration.
During each time step, the principal stresses from the previous
time step are subtracted from the current principal stresses and
divided by the time step to calculate the element stress rates.
These stress rates are then converted into strain rates by dividing
by the Young’s modulus. Similarly, when the current minor princi-
pal stress and corresponding stress rate are both negative, the in-
creased strength of the element due to the increase in absolute
value of the stress rate can also be obtained. When the stress rate
effect is considered and the stresses (or strains) for an element
meet the maximum tensile strain criterion or Mohr-Coulomb crite-
rion, it undergoes damage according to the constitutive law given
previously. The stress is then re-analysed iteratively using the cur-
rent boundary conditions to reflect the stress redistribution at this
time step. The program does not proceed to the next time step un-
til no new damaged elements are found during the iteration in a
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Time(LLs)

Fig. 13. Numerical simulated AE counts versus time for the case of a concentrated impact load on a mortar joint.
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Fig. 14. Numerical simulated elastic energy release (ENR) versus time for the case of a concentrated impact load on a mortar joint.
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current time step. More descriptions about the numerical simula- The numerically simulated failure modes and peak loads for
tions under static and dynamic loading have been presented in each wallette batch compared to the averaged experimental re-
previous publications (Ross et al., 1995; Wang et al., 2011). sults are shown in Table 3. The numerically simulated results

Fig. 15. Numerical simulated failure process of masonry structure resulting from a concentrated impact load on a brick (Py,,x = 6 MPa) (Shear stress distribution).
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show very good agreement with the experimental results for 150.8 and 102.2 kN, respectively, and the experimental ultimate
batches 1, 2 and 3. For example, from numerically simulated load is 480, 149, 98.4 kN, respectively. Considering the complexity
three force-displace curves, the peak load obtained is 485.4, of the problem and the variability of the materials, this is not

AE counts (n)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Time(lLs)

Fig. 16. Numerical simulated AE counts versus time for the case of a concentrated impact load on a brick.
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Fig. 17. Numerical simulated elastic energy release (ENR) versus time for the case of a concentrated impact load on a brick.
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Fig. 18. Comparison of accumulated AE counts versus time for the cases of concentrated impact load on a mortar joint and a brick.
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considered to be an unreasonable level of accuracy (Riddington
and Naom, 1994).

In addition, numerically simulated results show that the fail-
ure modes for the batches 1, 2 and 3 are different. For instance,
for batch 1, the cracks initiated from the bottom bricks and mor-
tar joints and propagated upwards. As a comparison, for batch 2
and 3, due the concentrated loads, the cracks initiated underneath
the indenter(s) and then propagated downwards. Furthermore,
the propagation of cracks from indenter(s) are unsymmetrical.
The failure characterises of cracks initiation and propagation
due to concentrated loads will be discussed in the following
section.

3. Numerical simulation of the failure process of unreinforced
masonry walls due to concentrated static and dynamic loading

3.1. Model setup

In these numerical simulations the problem is simplified to a
plane stress condition, as shown in Fig. 1. In total, four cases
are considered. Case I represents a static concentrated loading ap-
plied directly to the mortar joint; Case Il represents a static con-
centrated loading applied on the brick at mid-length; Case III
represents a concentrated impact load on a mortar joint; and Case
IV represents a concentrated impact load on a brick. For the static
cases, a displacement increment (0.005 mm/step) is applied to the
indenters. For the dynamic cases, three kinds of compressive
stress wave are applied, as shown in Fig. 2. The basic properties
of the brick, mortar and the brick-mortar interface are adopted
with the same in Table 1 (Riddington and Naom, 1994). The
strength and elastic modulus of the indenters in the current mod-
els are also shown in Table 2.

In the simulations, the model is discretised into 320 x 345 =
110,400 elements that are 320 mm wide and 345 mm high. The
size of the bricks is 60 mm wide and 30 mm high. Each complete
brick comprises 60 x 30 = 1800 elements, while the mortar joint
thickness is 5 mm with 5 elements.

3.2. Numerically simulated results for the failure process of masonry
walls subjected to static concentrated loads

In this section, two kinds of numerical simulations are carried out
to study the failure pattern of masonry walls. Case I represents a sta-
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tic concentrated loading applied on the mortar joint, and Case Il rep-
resents a static concentrated loading applied on the brick (Fig. 1).

3.2.1. Case I of static concentrated load on the mortar joint

Fig. 3 shows the numerically simulated failure process of brick
masonry for the case of a static concentrated load on a mortar joint.
Figs. 4-6 show, respectively, the corresponding load-displacement
behaviour, AE count-displacement plot and elastic energy release
(ENR)-displacement plot. From Fig. 3, it is clear that the stress con-
centrates below the indenter and, then, because the strength of
mortar is much lower than that of brick, the initial cracking occurs
along the vertical mortar joint (Stage A). As the vertical loads
increase, more cracks occur in the vertical mortar joints in the next
course down from the top, and the previous cracks develop
downwards along the vertical mortar joints (Stages B and C). Dur-
ing these stages, the cracking propagates as the load increases,
which indicates that the crack propagation is stable. It can be ver-
ified from Fig. 4 that the load-displacement plot is almost linearly
increasing from Point A to Point C. After this, some cracks occur in
the horizontal mortar joints, as shown in the first and second hor-
izontal mortar joints (Fig. 3 Stage D). Furthermore, both the vertical
and horizontal cracks propagate until they coalesce and form a
stepped crack (Fig. 3 Stage E). During some stages (Stages D and
E), the crack propagation is accompanied by a decrease in the ap-
plied load, as shown at Points D and E in Fig. 4. This indicates that
the crack propagation is unstable. Correspondingly, from Figs. 5
and 6, both the AE counts and the elastic energy release (ENR) in-
crease significantly at points D and E.

It is noted that the initial vertical crack below the indenter starts
to propagate and pass through the brick in the second course (Stages
E and F). As the vertical loads increase, most horizontal and vertical
cracks propagate along the mortar joints, and no more cracks tra-
verse the brick (Stages G and H). Finally, cracks reach a depth of
approximately 60% of the wall height. It is interesting to find that
the ultimate stepped cracks only propagate to the left of the wall,
and no symmetrical stepped cracks occur in the right section. This
is because the properties of the brick and mortar joints are different
materials which are shown in Table 1. Moreover, according to Wei-
bull distribution (Eq. (1)), the mechanical properties of each brick
and mortar joints such as the elastic modulus, the strength and Pois-
son’s ratio are not the same. Therefore, the masonry wall material is
heterogeneous, and the stress distribution due to the concentrated
load will not be homogeneous and symmetric. As a result, the crack-
ing pattern is also not symmetrical.
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Time(us)

Fig. 19. Comparison of accumulated elastic energy release (ENR) versus time for the cases of a concentrated impact load on a mortar joint and a brick.
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3.2.2. Case Il of a static concentrated load on a brick

Fig. 7 shows the numerically simulated failure process of brick
masonry for the case of a static concentrated load on a brick. Figs.
8-10 show, respectively, the corresponding load-displacement
behaviour, AE count-displacement plot and elastic energy re-
lease-displacement plot. Comparing Fig. 3 with Fig. 7, stress con-
centrates below the indenters in stage A. However, the initial
vertical cracks occur in mortar joints in the second and the third
courses, not the first course mortar joint as in Fig. 3. This is because
the strength of the brick material is much higher than that of the
mortar joints. When the concentrated load is applied to the brick,
the stress from the indenter is transferred downwards before brick
failure occurs, which results in crack initiation and propagation in
the second course. As the vertical loads increase, more cracks occur
in the subsequent vertical mortar joints. In the meantime, cracks

initiate and propagate in the brick directly below the indenter in
Stages B and C of Fig. 7.

Comparing Fig. 4 with Fig. 8, the crack propagation is stable
from Stages A to C. It can also be verified from Fig. 8 that the
load-displacement plot is almost linearly increasing from Point A
to Point C. However, in Stages D, E and G, crack propagation is
unstable. Correspondingly, from Figs. 9 and 10, both the AE counts
and elastic energy release increase significantly at Points D, E and
G. As before, the ultimate stepped cracks are also not symmetrical
due to the heterogeneity of the masonry wall, but this time the
stepped cracks form in the right half instead of the left half
(Fig. 3). Comparing the two cases of concentrated loading on a
mortar joint and a brick, a higher load is required to reach brick
failure than mortar joint failure in the initial stage because the
strength of brick is higher than that of mortar. This is why the
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Impact loads on a mortar joint

Impact loads on a brick
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Fig. 20. Comparison of failure modes for the cases of concentrated loads on a mortar joint and a brick with Py, values of 3, 6 and 9 MPa.
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load-displacement plot for the brick loading lies above that for the
mortar joint loading in Fig. 11.

3.3. Numerically simulated results for the failure process of masonry
walls subjected to dynamic (impact) concentrated loads

In this section, two kinds of numerical simulations are per-
formed to study the masonry wall failure patterns. Case III repre-
sents dynamic concentrated loading on a mortar joint, while Case
IV represents dynamic concentrated loading on a brick (Fig. 1).
The maximum stress (Ppax) of the compressive stress waves of
the two cases is 6 MPa, as shown in Fig. 2. Finally, the effect of
varying the magnitude of the compressive stress waves (Ppax) on
the failure pattern is discussed.

3.3.1. Case IIl of dynamic concentrated load on a mortar joint

Fig. 12 shows the numerically simulated failure process of a
masonry wall for the case of a dynamic concentrated load on a
mortar joint. Figs. 13 and 14 show, respectively, plots of the cor-
responding AE counts and elastic energy release (ENR) over time.
The durations for the indenter compressive stresses are fixed to
be 500 ps. During the first stage of loading (Stage A, t=50 ps),
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the stress fields induced by the indenter are similar to those in-
duced by the case of static loading in Fig. 3 (Stage A). The zone
immediately under the indenter is highly stressed, and a few
cracks are initiate and develop in the vertical and horizontal mor-
tar joints (Stage B, t=100 us). In the meantime, vertical tensile
cracks occur on the upper face of the bricks that lie either side
of the indenter. As the compressive stress waves from the impact
propagate during Stages C to H in Fig. 12, more cracks initiate and
propagate in the vertical and horizontal mortar joints. During this
period, vertical tensile cracks develop downwards but do not tra-
verse the bricks.

Comparing the final stage H in Fig. 12 with the final stage H in
Fig. 3, it is clear that the ultimate crack pattern for the dynamic
case is almost symmetric. This is because the compressive wave
propagates through the wall in a symmetric manner. However, be-
cause of the heterogeneity of the brick and mortar that has been
noted previously, the ultimate crack pattern of the masonry wall
is also not totally symmetric. Due to the damping effect of the ma-
sonry wall material, the gradual attenuation of the compressive
stress waves results in less cracking at points away from the inden-
ter. Figs. 13 and 14 indicate that both the AE counts and ENR are
also reduced.
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Fig. 21. Comparison of accumulated AE counts versus time for the cases of concentrated load on a brick with Pp,x values of 3, 6 and 9 MPa.
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Fig. 22. Comparison of accumulated ENR versus time for the cases of concentrated load on a brick with Pp,x values of 3, 6 and 9 MPa.
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3.3.2. Case 1V of dynamic concentrated load on a brick

Fig. 15 shows the numerically simulated masonry wall failure
process for the case of dynamic concentrated load on a brick. Figs.
16 and 17 show, respectively, the corresponding AE counts and
elastic energy release plots versus time. The duration of the inden-
ter compressive stresses are again fixed to be 500 ps. During the
first stage of loading (Stage A, t =50 us), the stress fields induced
by the indenter are similar to those induced by the case of static
loading in Fig. 7 (Stage A). However, comparing stages B and C in
Fig. 15 with those in Fig. 7, several small vertical tensile cracks oc-
cur along the upper surface of the brick beneath the indenter,
while only one such crack occurs in these stages for the static case
in Fig. 7. Moreover, the final failure pattern for the brick beneath
the indenter is also different. The brick splits into two parts via
the single vertical crack in the case of static loading, while the brick
is fragmented by many small cracks that coalesce under dynamic
loading.

Comparing the final stage H in Fig. 12 with the final stage H in
Fig. 15, the ultimate crack pattern for the dynamic case with a con-
centrated load on a brick is also symmetric. Furthermore, Figs. 16
and 17 show that both the AE counts and elastic energy release
diminish along with the compressive waves that develop because
of the damping of the masonry material. As a comparison, Figs.
18 and 19 show the AE counts and elastic energy release, respec-
tively, for dynamic loading on a brick and dynamic loading on a
mortar joint. Fig. 18 shows that the accumulated AE accounts for
the brick loading are generally lower than those for the mortar
joint loading, while Fig. 19 shows that the reverse is true for the
elastic energy release. This is because the strength of the brick is
greater than that of the mortar joint, and so more energy is re-
quired to cause the brick failure than mortar joint failure.

3.3.3. Effect of the amplitudes of incident pressure

Fig. 20 presents the effect of three kinds of compressive stress
waves on the failure pattern for a concentrated impact load on
the mortar joint and a brick. The maximum stress (Ppax) for the
three kinds of compressive stress waves is 3, 6 and 9 MPa, respec-
tively, as shown in Fig. 2. For the purposes of comparison, the dif-
ferent failure patterns at t =400 ps are provided. For the mortar
joint loading case with Pp.x =3 MPa, Fig. 20 shows vertical and
horizontal cracking in the mortar joints only in the first course of
the masonry wall, and there is no cracking in the brick beneath
the indenter. By comparison, when Pp,,x is 6 MPa, more vertical
and horizontal cracks occur in the first and second course mortar
joints, and some vertical cracks emerge from the top surface of
the bricks near the indenter. Moreover, when Pp,.x is 9 MPa, the
vertical and horizontal cracks occur in the mortar joints of the first
three courses of bricks, and more small cracks in the bricks are con-
centrated below the indenter, in addition to the cracks in the mor-
tar joint.

Similarly, for the case of impact loads on the brick, when P,y is
3 MPa, very few cracks occur in the vertical mortar joints in the
first course of masonry wall. As P, increases to 6 and 9 MPa,
more cracks occur in the horizontal and vertical mortar joints
and brick. Figs. 21 and 22 show accumulated AE counts and ENR
versus time for the two cases of concentrated load on the brick
with the Ppax values of 3, 6 and 9 MPa, respectively. It is clear that
with the increase of Py, more AE counts and higher elastic energy
releases are observed.

4. Conclusions

In this study, RFPA?P code has been applied to simulate static
and dynamic failure processes of unreinforced in-plane masonry
walls. In order to validate the RFPAZP code to simulate the masonry

structure, the experimental results (Riddington and Naom, 1994)
were used. The numerically simulated results show very good
agreement with the experimental results. Although the reality is
often much more complex than the applied numerical models,
the study provides interesting indications for understanding of
the failure mechanism of these structures. From the numerical
simulations, the following conclusions are derived.

For the case of static concentrated load on a mortar joint and a
brick, the numerical simulations show stable and unstable crack
propagation, with the latter being identified by sudden load drop,
high AE counts, and abrupt increases in the elastic energy release.
In addition, the numerical results show the formation of nonsym-
metrical stepped cracks at failure which is due to the heteroge-
neous nature of masonry. Because the strength of the brick is
greater than that of a mortar joint, much more energy is required
to cause brick failure than mortar joint failure for the same applied
loads. Therefore, different concentrated loading locations lead to
different initial failure patterns of the masonry walls.

For the case of a dynamic concentrated load on the mortar joint
and brick, the numerical results show the failure process of ma-
sonry walls along with the compressive waves propagating down-
wards. In addition, due to the damping of the masonry material,
the gradual attenuation of compressive waves results in fewer
crack initiations as the distance from the indenter increases. Fur-
thermore, numerical results show that the Py, of the compressive
stress waves plays an important role in the masonry wall failure
pattern. With an increase in Py, more vertical and horizontal
cracks occur in the mortar joints and more cracks appear in the
bricks.

In contrast to the static load cases, the numerical results show
that the ultimate crack pattern for the dynamic load case is almost
symmetric. This is because the compressive waves propagate
through the wall in a symmetric manner. However, because of
the heterogeneity that is inherent in a masonry wall, the ultimate
crack pattern is also not completely symmetric.

Suggestions for further work include validation of the proposed
numerical model for the 2D failure under concentrated dynamic
loading. Extension of the current 2D model to 3D configurations
will be conducted to study the failure characterises of masonry
walls subject to out-of-plane impacts.
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