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a b s t r a c t

Damage and fracture propagation around underground excavations are important issues in rock engi-
neering. The analysis of quasi-brittle materials can be performed using constitutive laws based upon
damage mechanics. The finite element code RFPA2D (Rock Failure Process Analysis) based on damage
mechanics was used to simulate a loading-type failure process around an underground excavation
(model tunnel) in brittle rock. One of the features of RFPA2D is the capability of modeling heterogeneous
materials. In the current model, the effect of the homogeneous index (m) of rock on the failure modes of a
model tunnel in rock was studied. In addition, by recording the number of damaged elements and the
associated amount of energy released, RFPA2D is able to simulate acoustic activities around circular
openings in rock. The results of a numerical simulation of a model tunnel were in very good agreement
with the experimental test using the acoustic emission technique. Finally, the influence of the lateral con-
fining pressure on the failure mechanism of the rock around the model tunnel was also investigated by
numerical simulations.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Damage and fracture propagation around underground
excavations are important issues in rock engineering. It is generally
recognized that, for a circular opening in a brittle rock subjected to
different stress fields, there exist three different fracture types:
spalling fracture under a compressive stress field, the primary frac-
ture under a tensile stress field, and remote fracture under a mix-
ture of compressive and tensile stress fields [1]. Lajtai et al. [2,3]
conducted biaxial compression tests at the laboratory scale to ob-
serve the development of fracture patterns and reported the frac-
ture phenomena. In addition, Fakhimi et al. [4] performed a
biaxial compression test on a sandstone specimen with a circular
opening to simulate the failure around an underground excavation
in brittle rock. The axial force and displacements were monitored
throughout the failure process, and micro-cracking was detected
by the acoustic emission technique.

In addition, to reflect the effect of cracks on the mechanical
properties of a rock mass, many theoretical models [5,6] have been
proposed based on fracture mechanics. However, for fracture
mechanics models, like other classical mathematical models, it is
difficult to characterize the entire fracture process, which involves
the initiation, propagation, and coalescence of micro-cracks
011 Published by Elsevier Ltd. All
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through to the formation of a full-scale macro-crack in the host
rock. Therefore, numerical modeling may be used to capture the
detail of the processes involved in progressive fracture. For exam-
ple, the distinct element computer program, particle flow code
(PFC2D) was used to simulate the damage zone around the circular
opening observed in the laboratory test [4]. These numerically sim-
ulated results showed that the crack pattern and the spalling of the
opening matched the laboratory results well. Wang et al. [7] used
the finite element method (FEM) to study the effect of heterogene-
ity and anisotropy of rock in the excavation damaged zone around
circular excavations in granite. The micro-crack pattern in the
numerical model was consistent with the locations of acoustic
emission (AE) determined in the laboratory test.

The aim of the study reported here is to examine the progressive
failure leading to collapse around a circular opening in brittle heter-
ogeneous rock, which is subjected to different confining pressures.
For this purpose, a numerical tool, Rock Failure Process Analysis
code, RFPA (Rock Failure Process Analysis) [8], was used. The pro-
gram is able to capture the heterogeneity of rock at the meso-level
using a probabilistic variation of the mechanical properties of the
materials [9]. The variations of properties, such as the elastic modu-
lus and the strength, were assigned in the finite element model to
conform to a Weibull probability distribution. RFPA has been used
extensively to simulate the failure process of rocks [10–17]. The un-
ique feature of this code is that no a priori assumptions need to be
made about where and how fracture and failure will occur: cracking
can occur spontaneously and can exhibit a variety of mechanisms
when certain local stress conditions are exceeded.
rights reserved.
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2. Numerical model descriptions and setup

Briefly, the code RFPA2D [11] is a two-dimensional finite ele-
ment code that can simulate the fracture and failure process of
quasi-brittle materials such as rock. To model the failure of rock
material (or rock mass), the rock medium is assumed to be com-
posed of many meso-scopic rectangular elements of the same size.
Their material properties differ and are specified according to a
Weibull distribution [18,19]. These elements act as the four-nod-
ded iso-parametric elements for finite element analysis. Elastic
damage mechanics is used to describe the constitutive law of the
meso-scale elements, and the maximum tensile strain criterion
and the Mohr–Coulomb criterion are utilized as damage thresholds
[17,19].

2.1. Meso-scale modeling with elastic damage mechanics

In the proposed model, the elastic damage mechanics approach
is employed to model the mechanical behavior of meso-scale ele-
ments. For each element, the material is assumed to be linear elas-
tic, isotropic and damage-free before loading, with its elastic
properties defined by the elastic modulus and Poisson’s ratio. After
the initiation of damage, based on elastic damage mechanics, the
strength and stiffness of the element is assumed to degrade grad-
ually as damage progresses, with the elastic modulus of the dam-
aged material given by [7,19]

E ¼ ð1�xÞE0 ð1Þ

where x represents the damage variable. The parameters E and E0

are elastic modulus of the damaged and the undamaged material,
respectively.

The constitutive relationship of meso-scopic element under
uniaxial tension is expressed as [17]

x ¼

0 e > et0

1� ftr
E0e

etu < e 6 et0

1 e 6 etu

8>>><
>>>:

ð2Þ

where ftr is the residual tensile strength, which is given as
ftr ¼ kft0 ¼ kE0et0. The parameters ft0 and k are uniaxial tensile
strength and residual strength coefficient, respectively, and et0 is
the strain at the elastic limit, which can be called the threshold
strain. etu is the ultimate tensile strain of element, at which the ele-
ment would be completely damaged. The ultimate tensile strain is
defined as etu = get0, where g is called the ultimate strain coefficient.
Eq. (2) can be expressed as [19]

x ¼

0 e > et0

1� ket0
e etu < e 6 et0

1 e 6 etu

8>>><
>>>:

ð3Þ

It is noted that the sign convention used throughout this paper
is that tensile stress and strain are positive. In addition, it is as-
sumed that the damage to a meso-scopic element in multiaxial
stress conditions is also isotropic and elastic [8]. Under multiaxial
stress states, the element is still damaged in tensile mode when the
equivalent major tensile strain �e reaches the threshold strain et0.
The equivalent principal strain �e is defined as follows [17,19]:

�e ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�e1i2 þ h�e2i2 þ h�e3i2

q
ð4Þ

where e1, e2 and e3 are three principal strains, and h�i is a function
defined as follows: [17]
hxi ¼
x x P 0
0 x < 0

�
ð5Þ

The constitutive law for an element subjected to multiaxial
stresses can be easily obtained by substituting the strain e in Eqs.
(2) and (3) with the equivalent strain �e. The damage variable is ex-
pressed as [17,20]

x ¼

0 �e > et0

1� ket0
�e etu < �e 6 et0

1 �e 6 etu

8>>><
>>>:

ð6Þ

To study the damage to the element when it is under compres-
sive and shear stress, the Mohr–Coulomb criterion, expressed as
follows, is chosen to be the second damage threshold [13–15].

F ¼ r1 �
1þ sin u
1� sin u

r3 P fc0 ð7Þ

where r1 and r3 are major and minor principal stresses, respec-
tively. fc0 is the uniaxial compressive strength, and u is the internal
friction angle of the meso-scopic element. This kind of damage is
called shear damage because the damage occurs when the stress
conditions of the element meet the Mohr–Coulomb criterion. Simi-
larly, when the element is under uniaxial compression and dam-
aged according to the Mohr–Coulomb criterion, the expression for
the damage variable x can be described as follows [7,19].

x ¼
0 e < ec0

1� kec0
e e P ec0

8><
>: ð8Þ

where k is also residual strength coefficient and k is equal to fcr/fc0 or
ftr/ft0 when the element is under uniaxial compression or tension.
Previous work with the code [19] has shown that, provided the
residual strength coefficient k is in the range 0 < k 6 0:1, the effect
of constitutive parameters on the failure evolution is minor. There-
fore, when RFPA2D is used to study the brittle failure of rock, these
two parameters must be specified within their respective ranges.

When an element is under a multi-axial stress state and its
strength satisfies the Mohr–Coulomb criterion, damage occurs,
and the effect of other principal stresses in this model during the
damage evolution process should be considered. When the
Mohr–Coulomb criterion is met, the maximum principal strain
(maximum compressive principal strain) ec0 is calculated at the
peak value of the maximum principal stress (maximum compres-
sive principal stress) [19].

ec0 ¼
1
E0

fc0 þ
1þ sin u
1� sin u

r3 � lðr1 þ r2Þ
� �

ð9Þ

where l is Poisson’s ratio. In this respect, the shear damage evolu-
tion is only related to the maximum compressive principal strain e1.
The maximum compressive principal strain e1 of the damaged ele-
ment will substitute for the uniaxial compressive strain in Eq. (8).
Thus, Eq. (8) can be extended to triaxial stress states for shear dam-
age [7,19].

x ¼
0 e1 < ec0

1� kec0
e1

e1 P ec0

8><
>: ð10Þ

In RFPA2D, the specified displacement (or load) is applied on
the specimen step by step. If some elements are damaged at this
step, according to the derivation of the damage variable x and
Eq. (1), the damaged elastic modulus of the elements at each stress
or strain level can be calculated when their stresses or strains meet
one of the two damage thresholds. Then, the calculation must be
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restarted under the current boundary and loading conditions to
find the stress redistribution in the specimen until no new damage
occurs. Finally, the applied load (or displacement) is increased and
goes into the analysis of the next step. By this means, the progres-
sive failure process of rock subjected to gradually increasing static
loading can be simulated. A user-friendly pre- and post-processor
is integrated into RFPA2D to prepare the input data and display
the numerical results [8–10].

In addition, in RFPA2D, the failure (or damage) of every element
is assumed to be a source of acoustic events because the failed ele-
ment must release its elastic energy stored during the deformation.
Therefore, by recording the number of damaged elements and
associated amount of energy release, RFPA2D is capable of simulat-
ing the AE activities [10]. According to Tang and Kaiser [8], the
cumulative damage, D, can be calculated by the following Eq. (11).

D ¼ 1
N

Xs

i¼1

ni ð11Þ

where s is the number of calculation steps, ni is the number of dam-
aged elements in the ith step and N is the total number of elements
in the model. In addition, when the element fails, the energy re-
leased is calculated by Eq. (12) [12].

Wi ¼
1

2E
r2

1 þ r2
3 � 2lr1r3

� �
V ð12Þ

where i is the element number, Wi is the released elastic strain en-
ergy, E is the elastic modulus, r1 and r3 are the major and minor
principle stresses, respectively, l is the Poisson ratio, and V is the
element volume [12]. By recording the counts of all failed elements
and released energies when failure occurs, the AE phenomena asso-
ciated with the progressive failure process can be simulated.

2.2. Model setup

In this paper, a plane strain (biaxial) test was performed on a
rectangular prism of Berea sandstone. The specimen was machined
with a 14 mm diameter hole to simulate an underground opening
(Fig. 1), although failure was achieved through loading rather than
excavation of the circular opening [4]. The model had dime
nsions of 40 mm � 100 mm. The mesh for the model had 12 0
� 300 = 36,000 elements. In RFPA2D, the rock is assumed to be
composed of many meso-scopic elements of the same size, and the
mechanical properties of these elements are assumed to conform
to a given Weibull distribution [18].
y 

x 

100mm 40mm 

10
0m

m
 

14mm 

(a)
Fig. 1. Model setup: (a) specimen geome
f ðuÞ ¼ m
u0

u
u0

� 	
exp � u

u0

� 	m

ð13Þ
where u is the mechanical parameter (Young’s modulus or strength)
of the elements and the parameter m defines the shape of the dis-
tribution function. From the properties of the Weibull distribution,
a larger value of m implies a more homogeneous material and vice
versa. Therefore, the parameter m is called the homogeneity index
in RFPA2D. For higher values of the homogeneity index, the Young’s
modulus and strengths of more of the elements are concentrated
closer to u0. In the current study, to investigate the effect of the het-
erogeneity of rock on the failure mechanism of a model tunnel, dif-
ferent homogeneity indexes of 1.1, 3, 5, 7 and 10 were selected. In
addition, different confining pressures of 3, 5, 7, 9 and 11 were ap-
plied to study the failure behavior of the circular opening in rock. All
of the input parameters in the numerical model are listed in Table 1.
To calibrate the numerical model of RFPA, the boundary conditions
and input parameters of the rock were the same as those in the lab-
oratory tests and the numerical model of PFC [4].

The failure approach is adopted in RFPA2D, where meso-scopic
fracturing occurs when the stress of an element satisfies a strength
criterion [8,9]. In confined conditions, the loading technique in-
creased the vertical and horizontal loads simultaneously to the le-
vel of the constant confining stress and then increased vertical load
(displacement control) until the model collapsed. The stress and
deformation were computed in each element. The specified dis-
placement is applied to the specimen step by step. At steps in
which the stress in some elements satisfies the strength criterion,
the element is damaged either in shear or in tension and becomes
weak according to the rules specified in the literature [8–10]. The
stress and deformation distribution throughout the sample are
then adjusted instantaneously after each element rupture to reach
the equilibrium state. At positions with increased stress due to
stress redistribution, the stress may exceed the critical value and
further ruptures are caused. The process is repeated until no failure
elements are present. Greater external displacement is then ap-
plied. Energy is stored in the elements during the loading process
and is released as acoustic emissions through the onset of element
failures. Due to the stress redistribution and the deformation in-
duced interactions, a single element failure may induce an ava-
lanche of additional failures in neighboring elements, leading to a
chain reaction that releases more energy.
z 

(b)

Vertical loading 

Confining 
pressure 

try [4] and (b) loading configuration.



Table 1
Material properties of specimens [4].

Parameter Value

Homogeneity index (m) 1.1, 3, 5, 7, 10
Mean compressive strength (r0) 40 MPa
Mean Young’s modulus (E0) 16,000 MPa
Tension cut-off 10%
Friction angle (u) 30
Confining pressure 3, 5, 7, 9, 11 MPa
Poisson ratio (v) 0.28
Density 2600 kg/m3
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3. Numerical results and discussions

3.1. The evolution of cracks around a circular opening in rock

Fig. 2 shows the numerically simulated failure process around a
circular opening in rock with m = 2.0 and a lateral confining pres-
sure of 7.5 MPa. Fig. 3 shows the comparison of the laboratory test
results (a) [4], the numerically simulated results according to PFC
(b) [4], and the numerically simulated results according to RFPA
(c). The Stages A–H in Fig. 2 correspond to the Points A–H in
Fig. 4. Fig. 4 shows the numerically simulated result of normalized
load (force/area) versus normalized displacement (displacement/
height) of the specimens together with the AE events.

In Fig. 2, by following the crack generation in the specimen dur-
ing the failure process, it was observed that the cracks start to de-
velop from the periphery of the circular opening (Stage A), where
the compressive stresses is highlighted. Stage A corresponds to
the point A in Fig. 4, which indicates the yield point of the normal-
ized load versus normalized displacement. With continued load-
ing, more damage is developed (Stages B–E). During this period,
some small cracks propagate and coalescence into larger cracks.
In Fig. 4, the AE events increase in relation to the distinct stress
Stage A Stage B

Stage FStage E 

Fig. 2. Numerically simulated failure process around a circular opening in rock with
drops in Stages A–E. With increased loading until Stage F, more mi-
cro-cracks localize near the lateral boundaries of the circular open-
ing and form notches. However, even during the evolution of these
notches, some cracks are formed near the eventual rupture zone.

With continued loading (Stage G), more damage is developed,
and further cracks are generated close to the rupture zone on both
sides of the specimen. Eventually, one of them prevails and contin-
ues to propagate. Finally, the specimen shows a macroscopic dis-
continuity along the rupture zone (Stage H). It is noted that, even
in Stage H, there is still the residual strength of the circular opening
in Fig. 4. The damage zone and micro-crack patterns in Fig. 3c are
similar to those observed from the laboratory test in Fig. 3a and the
numerically simulated results according to PFC in Fig. 3b [4]. In
addition, the normalized load–displacement curve for this speci-
men in Fig. 4 can be compared with the results of the actual lab test
in Fig. 5 [4]. Although the RFPA simulated specimen shows a
slightly stiffer response, both the peak loads and the accumulated
AE events match very well. In addition, by comparing the cracks
evolution in the specimen during the failure process, it was ob-
served that the cracks distribution is not symmetrical around the
circular opening. One possible reason is due to the heterogeneity
of the rock. In the next subsection, the influence of the heterogene-
ity of rock on crack patterns around a circular opening is reported.

3.2. Influence of the heterogeneity of rock on the failure mechanism of
a circular opening in rock

In this section, to study the effect of the heterogeneity of rock
on the failure mechanism of a model tunnel, different homogeneity
indexes of 1.1, 3, 5, 7 and 10 were selected. This mechanism can be
explained by examining the final stage of failure of the specimen
(Fig. 6) and plots of the normalized load (force/area) versus nor-
malized displacement (displacement/height) (Fig. 7) during the
failure process of circular opening specimens. The confining
Stage C Stage D 

Stage G Stage H 

m = 2.0 and a lateral confining pressure of 7.5 MPa (shear stress distribution).



(a) (b) (c) 

Stage H

Fig. 3. (a) Comparison of laboratory test results [4]; (b) numerically simulated results by PFC [4]; and (c) numerically simulated results by RFPA2D.
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Fig. 4. Numerically simulated results of normalized load (force/area) versus normalized displacement (displacement/height) behavior of the specimen together with the AE
events (RFPA2D), with m = 2.0 and a lateral confining pressure of 7.5 MPa.

Normalized load 
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Fig. 5. Experimental results of normalized load (force/area) versus normalized
displacement (displacement/height) behavior of the specimen together with the AE
events [4].
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pressure is 3 MPa. In Fig. 6, for the heterogeneous rock (e.g.,
m = 1.1), the micro-cracks are distributed around the circular open-
ing, and the final main crack forms and extends from the notches
on the periphery of circular opening in the vertical direction with
a gradual incline toward the vertical boundaries. However, for
the relatively homogeneous rock (e.g., m = 3 and 5), the number
of micro-cracks decreases. Moreover, there is a main crack extend-
ing from the notch with a gradual incline to the downward vertical
boundary, and another final main crack is more concentrated on
the vertical direction. Furthermore, for the highly homogeneous
rock (e.g., m = 7 and 10), the number of micro-cracks is much low-
er, and the final main crack almost propagates in the vertical direc-
tion (m = 10). The failure modes in Fig. 6 are different than those in
Fig. 2 because the confining pressure is different. The effect of the
confining pressure on the failure modes of a circular opening will
be investigated in Section 3.3.

The complete curves of the normalized load (force/area) versus
normalized displacement (displacement/height) simulated for the
specimens are shown in Fig. 7. Obviously, the normalized load–dis-
placement relation depends strongly on the heterogeneity of the
specimens. It shows that the shape of the relatively heterogeneous
rock (e.g., m = 1.1) has a gentler post-peak behavior under biaxial
compression. Correspondingly, for increasingly homogeneous
rocks with higher m, the shape tends to become increasingly shar-
per. In addition, the maximal normalized load (strength) of the
specimens is closely related to the homogeneity index m. The
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Fig. 6. Numerically simulated effect of the homogeneous index (m) of 1.1, 3, 5, 7, 10 on the failure modes of a circular opening with the same confining pressure of 3 MPa.
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Fig. 10. Numerically simulated effect of a confining pressure of 3, 5, 7, 9, and 11 MPa on the failure modes of a circular opening (m = 2).
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higher the value of the homogeneity index m, the higher the
strength of the specimen is. As a result, the curve becomes more
linear, and the strength loss is also more precipitous.

In addition, Figs. 8 and 9 shows the numerically simulated result
of the cumulative number of AE events and AE energy versus nor-
malized displacement, respectively, when the homogeneous index
(m) increases from 1.1 to 10. According to the Weibull distribution
in Eq. (13), a larger value of m implies a more homogeneous material
and vice versa. Under the same loading and boundary conditions,
less damaged elements will occur in the more homogeneous mate-
rial. Fig. 8 shows that the cumulative number of AE events decreases
with increasing m value. For instance, when m = 1.1, the final cumu-
lative number of AE events is 3665. When m is 3, 5, 7 and 10, the final
cumulative number of AE events is 2633, 2137, 1723 and 1506,
respectively.

However, with the increase of m, following the Weibull distribu-
tion, for higher values of m, the Young’s modulus and strengths of
more of the elements are concentrated closer to u0. Thus, more ele-
ments with high Young’s modulus and strength will be distributed in
the rock mass with higher m, and the higher applied loads are
needed to cause the damage of such elements. Accordingly, the dam-
aged elements will release more elastic energy. It is the reason for
the AE energy increase when m increases from 1.1 to 10 in Fig. 9.
The above analysis also explains the increase of the normalized peak
loads with the increase of m from 1.1 to 10 in Fig. 7.

3.3. Influence of confining pressures on the failure of a circular opening
in rock

To study the effect of the confining pressure on the failure
modes of a circular opening, different confining pressures of 3, 5,
7, 9 and 11 MPa were applied to the specimen. Fig. 10 shows the
final failure stage of the specimen. In Fig. 10, for the low confining
pressure of 3 MPa, the tensile cracks dominate in the failure pro-
cess. For the immediate high confining pressures of 5 and 7 MPa,
few tensile cracks of elements appear in the shear failure of spec-
imens because the confining pressure restrains the initiation and
propagation of tensile cracks. Moreover, for the high confining
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pressures of 9 and 11 MPa, almost no tensile cracking occurs.
Meanwhile, with increasing confining pressure, the micro-cracks
concentrate gradually on the horizontal direction (i.e., the direction
of the confining pressure). The V-shaped notch zones form in the
end. During the formation of V-shaped notch zones, shear cracks
plays a significant role in the formation of the crack patterns, with
a wedge of failed material attempting to move laterally into the
opening.

Fig. 11 shows the numerically simulated result of the normal-
ized load (force/area) versus normalized displacement (displace-
ment/height) of specimens with different confining pressures of
3, 5, 7, 9 and 11 MPa. From Fig. 11, the peak normalized load
(strength) of the specimen increased with increasing confining
pressure from 3 to 11 MPa. For instance, the peak normalized loads
were 34.1, 37.9, 43.1, 50.2and 52.0 MPa with the confining pres-
sures of 3, 5, 7, 9 and 11 MPa, respectively. Furthermore, Figs. 12
and 13 show the numerically simulated results of the cumulative
number of AE events and AE energy versus normalized displace-
ment, respectively, when the confining pressure increases from 3
to 11 MPa. In Fig. 12, the cumulative number of AE events de-
creases when the confining pressure increases from 3 to 11 MPa
because the higher confining pressures restrain the initiation of
tensile cracks and the propagation around the circular opening.
To cause damage to the elements in the rock specimen, higher
applied loads are needed. Accordingly, greater AE energy will be
released during the process of failure of the rock specimen (see
Fig. 13).

4. Conclusions

In this study, Rock Failure Process Analysis code (RFPA2D) was
briefly introduced. The program is able to capture the heterogene-
ity of rock at the meso-level using a probabilistic variation of the
mechanical properties of the materials. As a load is applied, the
cracks will grow, interact and coalescence. The unique feature of
this code is that no a priori assumptions are necessary about where
and how cracks will occur. Tensile or shear cracks can be simulated
when certain local stress conditions are exceeded. The numerically
simulated results reproduced the development of cracks around a
circular opening in rock, which were in very good agreement with
the experimental results and numerical results by PFC [4].
Although the reality is often much more complex than the numer-
ical models applied, the study provides interesting indications for
improving the understanding of the mechanism of the failure of
rock tunnels.

In addition, the numerically simulated results showed that the
heterogeneity of rock plays an important role in the failure mech-
anism of the circular opening in rock. The higher the value of the
homogeneity index m, the higher the strength of the specimen is.
Accordingly, the curve becomes more linear, and the strength loss
is also more precipitous. During the failure process of specimens,
the cumulative number of AE events increases with increasing m,
while the AE energy decreases.

Furthermore, according to the numerically simulated results, it
is demonstrated that the confining pressure is another important
factor that influences the failure mechanism of the circular
opening in rock. For low confining pressures, the tensile cracks
dominate the failure process; for higher confining pressures, shear
cracks dominate the failure process because the confining pressure
restrains the initiation and propagation of tensile cracks. As a re-
sult, the cumulative number of AE events decreases with higher
confining pressure, while the AE energy increases with increasing
confining pressure.
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