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Feedback controls for tunnel construction require identifying geomechanical parameters and adjusting
supporting parameters, both of which are optimisation problems. This paper presents an integrated
optimisation method for the feedback control of tunnel displacement; it combines the Support Vector
Machine (SVM), particle swarm optimisation (PSO) and numerical analysis methods. Initially, the nonlinear
relationship between parameters and displacements is efficiently represented by SVM. Numerical analysis is
then used to create training and testing samples for SVM recognition. PSO is used to search on the parameters
of SVM and to obtain the geomechanical and support parameters. A case study is provided to verify the
proposed methodology. This study provides an alternative means for adjusting tunnel construction schemes
based on field observations and the optimisation of quantitative integration.
ulin@126.com (S.L. Tang).

l rights reserved.

, Feedback analysis of tunnel construction u
Autom. Constr. (2010), doi:10.1016/j.autcon
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Rock displacement around a tunnel is caused by complex
interactions between the rock and the tunnel construction support
system. Based on many years of experience, Rabcewicz [1] of Austria
proposed the famous New Austria Tunnel Method (NATM), which
definitely pointed out the importance of surrounding rock deforma-
tion on tunnel construction. In fact, observation and control of
surrounding rock displacement is the primary objective of the tunnel
construction process [2,3]. Tezuka and Seoka [4] systematically
introduced the latest technologies for engineering underground
excavations in Japan and emphasised the “redesign” concept in the
excavation process. Tunnel construction is essentially a feedback
control process involving two correlative stages: geomechanical
parameters back analysis and supporting parameter optimisation.

Because the mechanics of tunnel excavation reflect the mechanical
properties of the surrounding rock, it is efficient to select parameters
based on field measurements. This method is called back analysis or
parameter identification. Back analysis methods are divided into three
classes: the reversed solving method, the direct method and the
collection of illustrative plates method. The direct method using
displacement is commonly adopted to determine geomechanical
parameters in rock engineering [5–12]. Zhu and Wang [13] proposed
applying back analysis to tunnel engineering with a dynamic construc-
tion theory for underground engineering. They studied the optimal
construction scheme for cavern groups using dynamic programming,
which improved on previous studies of construction optimisation
sequences. In addition, An and Feng [14,15] combined the evolution-
finite element, artificial neural network and parallel computation
methods for intelligent cavern group optimisation. This method has
been used to optimise the soft rock replacement scheme for an
underground powerhouse hydroelectric power station in China.

Typical methods such as the Powell method, Gauss Newton
method, Bayesian method, and Genetic Algorithm have been proposed
for obtaining optimal parameters from displacement measurements
[16–18]. However, two problems with the tunnel optimisation method
remain completely unresolved. First, because calculations are done in a
large space and are highly multi-modal, they cannot be solved by some
calculus-based andenumerative techniques. In addition, thehighly non-
linear and complex relationship between the INPUT and OUTPUT of
tunnel construction complicates and slows numerical simulations.
Therefore, a powerful model with a faster simulation time is needed
to study this non-linear relation.

Particle Swarm Optimisation (PSO) and Support Vector Machine
(SVM), the latest computational intelligence algorithms, have been
increasingly focused based on their performance [19–26]. Begambre
and Laier [20] used PSO to study structural damage identification;
Pereza and Behdinan [21] detailed a PSO algorithm that is suitable for
optimising structural constraints; Lute et al. [24] used SVM to predict
the flutter derivatives for any bridge deck size based on wind tunnel
experimental data; M.Y. Cheng [25] proposed an Evolutionary SVM
combining genetic algorithms and SVM to create an Evolutionary SVM
sing a hybrid arithmetic based on Support Vector
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Inference System (ESIS); and Samui [26] used SVM to study the
settlement of shallow foundations on cohesionless soils.

In the present study, the tunnel construction process is regarded as a
self-adaptation control process [16]. Orthogonal design and numerical
simulation were used to develop a new intelligent displacement
optimisation control method, which incorporates a support vector
machine and particle swarmoptimisation. As a case study, the proposed
method was applied to the optimisation of shotcrete parameters for a
typical tunnel.

2. Particle Swarm Optimisation and Support Vector Machine

2.1. Particle Swarm Optimisation

PSO is a global optimisation method proposed by Kennedy and
Eberhart [19] to solve nonlinear global optimisation objectives. It is
based on the swarm behaviour of birds or fishes around food. The
term “particle” is used here to refer to the individual candidate in the
PSO solution process. Fundamentally, it is assumed that each actor
will benefit from the experiences of both itself and the group. As an
iterative optimisation tool, PSO is similar to Genetic Algorithm
methods in that the system is initialised as a group of stochastic
solutions and the optimised solution is found by iteration. However,
the particles do not have the crossover and mutation operations; they
move following the optimal particles. Each solution of the optimisa-
tion problem is considered a particle, which is like a bird. In addition,
each particle has a fitness value determined by the optimisation
function in PSO and a direction and distance determined by its
velocity. The two extreme values are tracked by the particles in each
iteration. The first point is the optimal solution out of all of the
particles throughout the searching history: the global optimal
solution, gbest=[g1, g2,……, gn]. The second point is the optimal
solution for each particle in its own experience: the individual optimal
solution, pbesti=[pi1, pi2,……, pin]. The ith particle is expressed by xi=
[xi1, xi2,……, xin],, and the kth correction (particle velocity) is vik=[vi1k ,
vi2
k ,……, vink ]. The iterative formulas are as follows:

vkid = wiv
k−1
id + c1 × rand1 × pk−1

id −xk−1
id

� �

+ c2 × rand2 × gk−1
d −xk−1

id

� � ð1Þ

xkid = xk−1
id + vkid ð2Þ

where i=1, 2,……, m and d=1, 2,……, n. m is the number of the
particles in the swarm, n is the dimension number of the solution
vectors, c1 and c2 are positive constants, and rand1 and rand2 are
random numbers between zero and one. wi is the inertia weight.

To improve the performance of particle swarm optimisation,
inertia weight was adjusted according to the following equation [3]:

w = w0 1− k−1
k

� �n� �
ð3Þ

where w0 is a given constant, k is the number of flights, and n is a
constant.

2.2. Support Vector Machine

SVM is a machine learning tool that uses statistical learning theory
to solve multi-dimensional functions. It is based on structural risk
minimisation principles, which overcomes the extra-learning prob-
lem of ANN. First, it uses the linear regression function f (x)=w⋅x+b
to fit data {xi, yi}, i=1,…, N, xi∈Rd, yi∈R and supposes that all trained
data may be fitted within the tolerated precision for the linear
function, ε. Using nonlinear relationships, the data samples are
mapped from the original space to a higher-dimensional character-
Please cite this article as: A.N. Jiang, et al., Feedback analysis of tunne
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istic space: φ(x1)=( φ(x1), φ(x2),…, φ(xN)). In the higher-dimen-
sional space, the optimal decision function f(x)=wd φ(x)+b is
constructed. Thus, the complex nonlinear estimation function
becomes a linear estimation function in higher-dimensional space.
The standard SVM of Vapnik [22] and least square SVM of Suykens
[23] select different allowed slack variables (ξ): ξ and the two norm of
ξ, respectively. For least square SVM, the optimisation problem
becomes:

minJ w; ξð Þ = 1
2
wT · w + c∑

N

i=1
ξ2k

s:t : yk = φ xkð Þ · wT + b + ξk; k = 1; ⋯;N:
ð4Þ

In formula (4), ξ is the slack variable and c is the penal factor used
to adjust model complexity and training error. The optimisation
problem is solved by the Lagrange method:

L w; b; ξ; að Þ = 1
2
wT · w +

c∑
N

k=1
ξ2k−∑

N

k=1
ak wT · ϕ xkð Þ + b + ξk−yk
� � ð5Þ

where ak(k=1,…,N, N is an integer) are Lagrange multipliers.
According to the optimisation conditions, the partial derivatives are
solved for w, b, ξ, and a, and these terms are made zero, yielding:

w = ∑
N

k=1
akϕ xkð Þ; ∑

N

k=1
ak = 0; ak = cξk;

wT · ϕ xkð Þ + b + ξk−yk = 0

ð6Þ

The innerproduct function isdefinedask(xi,xj)=φ(xi)d φ(xj),k(xi,xj)
which is a symmetrical function matching the Mercer condition.
According to Eq. (6), the optimisation problem becomes solving a system
of linear equations.

0 1 ⋯ 1
1 k x1; x1ð Þ + 1 = c ⋯ k x1; x1ð Þ
⋮ ⋮ ⋱ ⋮
1 k xN ; x1ð Þ ⋯ k xN ; xNð Þ + 1 = c

2
664

3
775

b
a1
⋮
aN

2
664

3
775 =

0
y1
⋮
yN

2
664

3
775 ð7Þ

Finally, the nonlinear model is given as follows:

f xð Þ = ∑
N

k=1
akk x; xkð Þ + b ð8Þ

The system of linear equations can be solved by the least square
method. The training method, called the Least Square-Support Vector
Machine (LS-SVM), has a faster training speed than standard SVM. In
Eq. (8), the inner product function k(x, xk) could be divided into three
kernel functions: a polynomial kernel function, a Gauss kernel
function and a sigmoid kernel function. The Gauss kernel function
yields good calculation results due to several advantages: (1) the
Gauss kernel function has better forecast performance than the
Sigmoid kernel; (2) the Gauss kernel requires fewer parameters than
the polynomial kernel; and (3) the Gauss kernel function is universal,
so it can fit all data samples and produce smooth estimates. This study
uses the Gauss kernel function of formula (9) for k(x, xk):

k x; xið Þ = expð� x−xij j2
2σ2 Þ ð9Þ

where σ is a constant called the kernel parameter.
l construction using a hybrid arithmetic based on Support Vector
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3. The tunnel feedback control method based on PSO-SVM

In this section, an intelligent displacement control algorithm is
provided based on the integration of PSO, SVM and numerical analysis.
The algorithm is shown in Fig. 1. The control procedure can be divided
into twomain sections: feedback analysis of themechanical parameters
of the surrounding rock and optimisation of the supporting scheme
based on recognised rock parameters. Each section includes training the
SVMmodel and using it to optimise parameters, as described below.

3.1. Non-linear relationship expressed by SVM

The non-linear relationship between the parameters of the rock-
supporting system and the displacement of surrounding rock can be
described using an SVM model, SVM(X):

SVM Xð Þ : Rn→R
Y = SVM Xð Þ
X = x1; x2; ⋯; xnð Þ

ð10Þ
Compare monitoring data and control 
displacement

Are they equivalent?

Yes

Identify geomechanical parameters

C

Apply SVM model

Produce new particles 
randomly

Calculating the fitness of 
each particle (Eq.12) 
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Particles flying

No
Yes

Yes
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Fig. 1. Flow chart presenting the tunnel cons
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where xi(i=1,2,…,n) are the parameters of the rock-supporting system
such as Young's modulus, shotcrete thickness, shotcrete Young's
modulus, cable diameter, and cable length. Y is the displacement of the
surrounding rock at the key point.

SVM(X) is obtained through a training process that includes the
creation of training samples using numerical simulation and the
determination of SVM training parameters. The training samples
are created by applying numerical analysis to the given orthogonal
experimental design to obtain the corresponding displacement
of rock mass at key points. In consideration of the influence of
training parameters (kernel parameter σ and penal factor c) on the
generation performance of SVM, these parameters are found by
particle swarm optimisation arithmetic in global space, as described
below:

Step 1 For each analysis task, training data sets are constructed that
correspond to the geomechanical parameters (or supporting
parameters) and displacement at key points. Numerical analysis
is used to calculate the data set for the every set of orthogonal
experimental schemes. To improve the generation performance
Continue construction

Produce random
particles 

Train SVM 

alculating the fitness of 
each particle (Eq.11) 

End condition
met?

Particles flying
(Eq.1-3)

All optimisations  
completed?

Output results

Optimize SVM 
parameters 

No

Yes

No

truction feedback optimisation method.
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of SVM, a testing sample set is selected from the data set and used
to assess the applicability of SVM.

Step 2 The parameters of PSO-SVM are initialised, including popula-
tion size, evolutionary generation number, initial value of
inertia weight, and parameter ranges for σ and c of the SVM
kernel function. Initial particles are produced randomly,
yielding a set of c and σ values within the given ranges. Each
selected kernel function with its parameters is considered an
individual for SVM.

Step 3 The SVM is trained using the corresponding values of c and σ,
and the predicted values are compared with test samples. The
applicability of the model is measured in terms of fitness:

Fitness = max
xj−x′j
��� ���

x′j

8<
:

9=
;; j = 1;2; :::; k

0
@

1
A ð11Þ

where xj and xj
’ are the estimated displacement of the

tentative SVM and the calculated key point rock mass at the
jth testing sample. The test number is j=1,2,……k, k.

Step 4 For the ith particle in the population, fitness pi is compared
with the local optimal solution pbesti. If pibpbesti, then pbesti is
replaced by pi and xpbesti equals xi.

Step 5 Step 4 is repeated for each particle in the population, and the
fitness of the optimal solution pbesti is compared with the
fitness of global optimal solution of the former generation,
gbest. If pbestibgbest, then gbest is replaced by pbesti and the
corresponding particle is designated the optimal one: xgbest
equals xi.

Step 6 If the fitness is accepted, the SVM training procedure ends,
outputting the supporting vectors. If not, new particles are
produced according to Eqs. (1)–(3), and the process returns to
Step 2.

3.2. Feedback optimisation process

Both back analysis of the mechanical parameters of surrounding
rock or supporting scheme optimisation can be treated as an
optimisation problem and solved by PSO. The fitness function for
PSO arithmetic considers the essence of parameter back analysis and
supporting parameter optimisation:

fitness =
1
m

∑
m

i=1
SVMi Xð Þ−Yij jð Þ ð12Þ

where m is the number of key points (or measure lines) and Yi is the
monitored displacement or controlling displacement of the ith key
point.

Themethod for tunnel displacement optimisation control based on
the SVM model is as follows:

Step 1 The monitoring displacement is compared with the objective
displacement. If they are equivalent, the original supporting
scheme is maintained and construction is continued. If there is
a significant difference between the monitoring and control
displacements, the process proceeds to Step 2.

Step 2 The geomechanical parameters for identification and their
ranges are selected.

Step 3 Individual n particles are randomly generated within their
given ranges. Each individual represents an initial solution.

Step 4 According to Section 3.1, the SVM model is made to describe
the nonlinear relation between parameters and key displace-
ment. A set of parameters are input to the SVM obtained above
to calculate the displacement of key points.

Step 5 The fitness of current individual pi is evaluated according to
Eq. (12) to determine the local optimal fitness, pbesti, and the
local optimal solution, xbesti, of the individual.
Please cite this article as: A.N. Jiang, et al., Feedback analysis of tunn
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Step 6 If all of the individuals are evaluated, the global optimal fitness,
gbest, and its corresponding solution, xbest, are obtained for the
population. Otherwise, the process repeats from Step 4.

Step 7 If demands are satisfied for the iteration number or minimal
error and the optimal parameters are given, the process
continues from Step 9.

Step 8 The local optimal solution and global optimal solution are
obtained. Particles iterate according to Eqs. (1) and (2), and
inertia weight iterates according to Eq. (3); the process repeats
from Step 4.

Step 9 If the supporting parameters are optimised, the optimisation
result is produced and the supporting scheme is adjusted. If
only the rock mechanical parameters are optimised according
to the recognised parameters, the supporting scheme para-
meters and their ranges are determined and the process
repeats from Step 3 until the optimal supporting scheme is
obtained.

4. Case study

4.1. Engineering introduction

In this section, the proposed procedure is tested by applying it to
the case study of a circle arc tunnel in Dalian, China. Based on
geophysical explorations, the tunnel passes through two rock strata,
weathering shale and weathering limestone, between stake numbers
K11+000 and K11+220. The buried depth is more than 30 meters,
and the surrounding rock is III class. The rock strength is low and the
weathered layer is thick. There aremany faults and joints. The original
ground stress is according to the self-weight stress field. The tunnel is
7.4 m wide and 6.7 m high; it was excavated by the Drilling and
Blasting Method and Two-Bench Excavation. The primary support
must be adopted quickly after excavation to close and protect the
surrounding rock and to control the deformation of the surrounding
rock. The loading ring is formed of rock and supports. The monitoring
points and supports of the typical tunnel section are shown in Fig. 2.

The original support scheme adopts shotcrete with a Young's
modulus of 5 GPa and a thickness of 6 mm. The bolt has a diameter of
22 mm, a length of 3 m and a space of 1.2 m. The measuring points are
arranged in an interval tunnel section near the tunnel face as shown on
Fig. 2. During excavation, surrounding rock displacement increased and
became steady. The final monitored radial displacements of the
measuring line between the two points in studied section are 8.11 mm
along AB, 9.15 mm along AE, 12.5 mm along AG and 0.97 mm along EF
(Fig. 2).

4.2. Identification of geomechanical parameters

According to prophase exploration data, strata 1 and strata 2 both
have Young's modulus values between 0.2 and 2.0 GPa and Poisson
ratios between 0.2 and 0.4. Because these elastic parameters cause the
surrounding rockdisplacement to bemore evident, theywereuniformly
adopted in the scope for the combined 32 samples. Numerical analysis
was conducted to produce the data samples shown in Table 1. The first
26 samples were used for training and the other six samples (indicated
with stars) were used for testing. Other geomechanical parameters for
strata 1 are as follows: cohesiveness is 1 MPa, internal friction angle is
30°, tensile strength is 0.2 Mpa and density is 2300 kg/m3. For strata 2,
cohesiveness is 1.5 MPa, internal friction angle is 35°, tensile strength is
0.5 MPa and density is 2500 kg/m3.

The PSO parameters were set for a population scale of 20, a
maximum iteration number of 30, a variables number of 4 and an
initial inertia weight of 0.35. The trained SVM identified additional
parameters: E1=4E8, E2=1.1E9, u1=0.23, and u2=0.29. The
calculated feedback is compared with the monitored displacement
in Fig. 3. The displacements calculated from the identified parameters
el construction using a hybrid arithmetic based on Support Vector
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Fig. 2. Numerical grid and cross section of the tunnel.
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are similar to the observed displacements from monitoring data,
which demonstrates that the identified rock mechanical parameters
agree well with actual conditions. The PSO convergence curve for
identifying rock parameters is shown in Fig. 4, which shows that the
PSO algorithm can converge quickly, and the optimal solution is
therefore rapidly found. Variations of the recognised parameters are
shown in Fig. 5. Themechanics parameters vacillate in the initial stage
of arithmetic and tend to stabilise with further iterations, indicating
progress toward the optimal parameters.
Table 1
Training and test samples used to identify rock mechanical parameters.

Scheme E1, GPa μ1 E2, GPa μ2 AB, mm AE, mm AG, mm EF, mm

1 0.2 0.2 0.2 0.2 16.078 20.124 37.322 2.193
2 0.2 0.27 0.7 0.27 16.013 17.567 24.259 1.187
3 0.2 0.34 1.4 0.34 16.048 16.901 20.735 2.121
4 0.2 0.4 2.0 0.4 16.093 16.593 19.028 3.202
5 0.7 0.2 0.2 0.27 4.614 7.917 22.511 2.933
6 0.7 0.27 0.7 0.2 4.440 5.759 12.387 0.434
7 0.7 0.34 1.4 0.4 4.577 4.723 6.237 2.758
8 0.7 0.4 2.0 0.34 4.528 4.758 6.954 2.552
9 1.4 0.2 0.7 0.34 2.240 2.952 6.655 1.231
10 1.4 0.27 0.2 0.4 2.418 5.152 17.476 5.009
11 1.4 0.34 2.0 0.2 2.110 2.750 6.913 0.485
12 2.0 0.2 0.7 0.4 1.596 2.060 4.6459 1.878
13 2.0 0.27 0.2 0.34 1.680 4.603 17.891 4.362
14 2.0 0.34 2.0 0.27 1.473 1.830 4.702 1.222
15 0.2 0.2 2.0 0.2 15.961 17.145 22.361 0.385
16 0.2 0.27 1.4 0.27 15.987 17.094 21.902 1.269
17 0.2 0.34 0.7 0.34 16.073 17.374 23.103 2.615
18 0.7 0.2 2.0 0.27 4.457 4.938 7.662 0.239
19 0.7 0.27 1.4 0.2 4.428 5.287 10.030 5.889
20 0.7 0.34 0.7 0.4 4.692 5.196 8.595 3.234
21 1.4 0.2 1.4 0.34 2.295 2.479 4.298 0.872
22 1.4 0.27 2.0 0.4 2.260 2.173 2.626 1.928
23 1.4 0.4 0.7 0.27 2.262 3.471 8.776 2.475
24 2.0 0.2 1.4 0.4 1.571 1.587 2.289 1.381
25 2.0 0.27 2.0 0.34 1.523 1.674 3.041 1.287
26 2.0 0.34 0.2 0.27 1.631 4.839 19.552 4.303
27* 2.0 0.4 0.7 0.2 1.457 2.656 9.393 1.790
28* 1.4 0.34 0.2 0.2 2.268 5.729 21.763 3.566
29* 0.7 0.4 0.2 0.34 4.685 7.737 21.80 5.623
30* 0.2 0.4 0.2 0.4 16.290 19.573 33.878 6.270
31* 2.0 0.4 1.4 0.2 1.432 2.177 7.035 1.218
32* 1.4 0.4 1.4 0.27 2.177 2.698 6.418 1.966

Please cite this article as: A.N. Jiang, et al., Feedback analysis of tunne
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4.3. Optimisation of shotcrete parameters

Support parameters like bolt and shotcrete specifications can be
adjusted to control tunnel displacement. In this case, the bolts
parameters are not changed from the original scheme, and the shotcrete
parameters (layer thickness and layer Young'smodulus) are adjusted to
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Fig. 3. Comparison of feedback-analysed and measured displacements.
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Table 2
Training and test samples used to optimise shotcrete parameters.

Scheme Thickness,
cm

Elastic
modulus,
GPa

AG,
mm

Scheme Thickness,
cm

Elastic
modulus,
GPa

AG,
mm

1 6 5 12.5 9 6 30 9.1
2 12 10 10.1 10 12 50 6.7
3 18 30 6.8 11 18 5 10.8
4 24 50 5.7 12 24 10 8.4
5 6 10 11.7 13 6 50 7.9
6 12 30 7.6 14* 12 5 11.7
7 18 50 6.1 15* 18 10 9.1
8 24 5 10.1 16* 24 30 6.3

Fig. 6. Contour diagram of the vertical di
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control the surrounding rock displacement along AG. Shotcrete
parameters and displacements for the 16 samples obtained by
numerical analysis prior to training the SVM are shown in Table 2; the
first 13 samples were used for training, and the other three samples
(indicated with stars) were used for testing.

Using data from Table 2, the SVMmodel was trained by substituting
7 mmAG for the control objective in formula (12). The variables number
was set to 2, the population scale was 40, the iteration number was 60
and the initial inertia weight was 0.35. The PSO-optimised shotcrete
parameters were 11.85 mm thickness (which can be 12 mm according
to a simple rounding approach for construction) and a Young'smodulus
of 21.45 GPa. The result of a numerical analysis based on only optimised
parameters is shown in Fig. 6. The displacement of arc subsidence is
about 5 mm, the bottom rising displacement is about 2 mm, and the
convergence displacement of AG is about 7 mm.

Fig. 7a shows the fitness values of first generation particles in the
PSO searching process. The values are large and dispersed because
randomly produced particles in the prescribed range are far from the
optimal solution. Fig. 7b shows the fifth generation particles for which
the values of whole particle fitness are obviously reduced. Fig. 7c
shows the 20th generation particles, which have more depressed
fitness values and are divided into two parts that approach 1.5 and 0.
Fig. 7d shows particles of the 60th generation; the fitness values for
this generation more strongly approach zero.

The PSO fitness values for searched shotcrete thickness and
shotcrete Young's modulus by iteration are shown in Fig. 8. This
figure shows that fitness values for the initial stage are large and that
the particles are far from the optimal solution. With additional rounds
of iteration, the particles approach the optimal solution and the
corresponding fitness values decrease. The optimal solution is
achieved after the 20th round. This also demonstrates the good
convergence of the PSO algorithm.

5. Discussion

In the above optimisation process, the kernel parameter σ and the
penal coefficient c are important factors that affect the generational
performance of SVM. Effects of SVM parameters on the forecast result
are shown in Figs. 9 and 10. In these figures, longitudinal coordinates
represents relative error, which is defined as the ratio of the absolute
measuring error to the true value. The horizontal coordinates in Figs. 9
splacement from numerical analysis.
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Fig. 7. Fitness values by generation.
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and 10 are the penal factor, c, and the kernel parameter, σ, respectively.
For values of c below 20, the magnitude of the forecast error of SVM
approaches 0.6; when c increases to more than 20, the forecast error of
SVM is reduced to 0.05. When σ is less than one or more than two, the
magnitude of the corresponding forecast error is more than 0.1 and
when σ is between one and two, the corresponding forecast error is
reduced to 0.04. Variations in the penal factor, c, and the kernel
parameter, σ, will change the SVM forecast error, which shows that it is
imperative to select proper parameters to guarantee the forecast
performance of SVM. Because SVM is not a method for selecting these
parameters, optimising SVM parameters through PSO arithmetic can
avoid blind parameter selection. The convergence of the PSO search for
the SVM parameters is shown in Fig. 11. Smaller fitness values permit
Fig. 8. Variations in parameters and fitness by generation.
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the generation of better solutions by arithmetic. Fig. 11 shows that an
iteration number of 6 is associated with a fitness value as low as 0.05.
This demonstrates that PSO is capable of rapidly identifying optimal
parameters of SVM.

In the tunnel construction process, the tunnel design should control
the surrounding displacement to get clearance within a section. If the
displacement of the surrounding rock is too small, an excessively large
supporting force is needed. However, if displacement exceeds the
allowable value, the stability of the surrounding rock cannot be
guaranteed. Therefore, a suitable convergence displacement of the
surrounding rock is needed, which is referred to as objective
displacement in this paper. Objective displacement should be deter-
mined by the properties of the surrounding rock, cavern size and buried
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depth of the tunnel. The observed AG displacement is 11 mm, which
corresponds to an original shotcrete support scheme with a Young's
modulus of 5 GPa and a thickness of 6 mm. The control objective of AG is
7 mm. Based on the control method proposed here, the feedback-
optimised shotcrete has a thickness of 12 mm, a Young's modulus of
21.45 GPa and a corresponding displacement along AG of 7.2 mm
(Fig. 12). The optimised parameters provide an acceptable control for
the displacement objective.

The suggested method is based on conceptual feedback and
optimisation designs for tunnel construction. Rock mechanical para-
meters and support parameters represent system inputs, and the
surrounding rock displacements are the system outputs. Numerical
analysis, support vector machine and particle swarm optimisation are
effectively combined to express the system,which is capable of obtaining
quantitative results for both the rockmechanical parameters and support
parameters based on monitored and control objective displacements.

6. Conclusion

This study presents a feedback optimisationmethod based on PSO-
SVM for controlling displacements during tunnel construction. It can
be divided into two main sections: feedback analysis of the
surrounding rock mechanical parameters and optimisation of support
parameters. Feedback analysis identified characteristics of the
surrounding rock, and support optimisation defines the appropriate
support scheme to deform the surrounding rock according to the
control objective. Both of these sections are essentially optimisation
problems and include both training the SVM model and optimising
the parameters based on that trained model.

Representative samples for SVM training and factor sensitivity
analysis were given by the orthogonal experimental design method,
which efficiently reduced the number of numerical simulations. It
demonstrated that the SVMmodel was capable of accurately describing
the nonlinear relations between displacement and rock parameters. The
forecast error of SVM varied with the SVM parameters, which showed
that PSO optimisation of the SVM parameters is necessary. PSO
demonstrated good global optimisation performance and quick iden-
tification of optimal results. The proposed method combined the
advantages of orthogonal experimental design, numerical simulation,
SVMand PSO andprovides a real time, quantitative andpowerfulmeans
to inform construction activities and adjust dynamic construction
schemes. The case study demonstrated that the displacements
predicted by the identified parameters were in good agreement with
fieldmeasurements and that theobtained shotcreteparameterswere an
acceptable control for the deform of surrounding rock.

In this research, the method is applied only to the control of the
displacement objective and optimisation of the shotcrete parameters.
Future research should be conducted to improve the flexibility of the
Please cite this article as: A.N. Jiang, et al., Feedback analysis of tunne
Machine and Particle Swarm Optimisation, Autom. Constr. (2010), doi:
method by applying it to additional objectives for economics, damage
zones and other support parameters such as cable design.

Acknowledgements

The authors deeply appreciate support from Fundamental Research
Funds for the Central Universities (2009QN050), Liaoning Province
Education Department Fund (L2010063) and the National Natural
Science Foundation (51079010).

References

[1] L. Rabcewicz, J. Gosler, Application of the NATM to the underground works at
Tarbela. Part 1, International Journal of Rock Mechanics and Mining Sciences &
Geomechanics Abstracts 11 (11) (1974) 225.

[2] LiS.H. , The new theory of tunnel supporting design (in Chinese), Beijing, 1999.
[3] M. Sapigni, G.L. Barbera, M. Ghirotti, Engineering geological characterization and

comparison of predicted and measured deformations of a cavern in the Italian
Alps, Engineering Geology 69 (2003) 47–62.

[4] M. Tezuka, T. Seoka, Latest technology of under ground rock cavern excavation in
Japan, Tunnelling and Underground Space Technology 18 (2003) 127–144.

[5] X.H. Li, X.G. Jin, H.M. kang, Y.Y. Lu, Intelligent back analysis of tunnel rock
displacement and its application, Chinese Journal of Underground Space and
Engineering 21 (4) (2001) 299–304.

[6] J. Lee, S. Akutagawa, Y. Yokota, A. Isogai, T. Matsunaga, Estimation of model
parameters and ground movement in shallow NATM tunnel by means of neural
network, Tunnelling and Underground Space Technology 21 (2006) 242–249.

[7] Z.C. Guan, Y.J. Jiang, Y. Tanabashi, Rheological parameter estimation for the
prediction of long-term deformations in conventional tunnelling, Tunnelling and
Underground Space Technology 24 (2009) 250–259.

[8] S.S. Vardakos, M.S. Gutierrez, N.R. Barton, Back-analysis of Shimizu Tunnel No. 3
by distinct element modeling, Tunnelling and Underground Space Technology 22
(2007) 401–413.

[9] T. Okabe, K. Hayashi, N. Shinohara, S. Takasugi, Inverse of drilling-induced tensile
fracture data obtained from a single inclined borehole, International Journal of
Rock Mechanics and Mining Sciences 35 (6) (1998) 747–758.

[10] W.G.Y. William, Y.S. Yoon, Aquifer parameter identification with optimum
dimension in parameterization, Water Resources Research 17 (3) (1981)
664–672.

[11] X.T. Feng, B.R. Chen, C.X. Yang, Identification of visco-elastic models for rocks
using genetic programming coupled with the modified particle swarm optimi-
zation algorithm, International Journal of Rock Mechanics and Mining Sciences 43
(5) (2006) 789–801.

[12] J.A. Hudson, X.T. Feng, Updated flowcharts for rock mechanics modelling and rock
engineering design, International Journal of Rock Mechanics and Mining Sciences
44 (2) (2007) 174–195.

[13] W.S. Zhu, P.Wang, The application of dynamicprogramming theory for caverngroup
construction mechanics, Chinese journal of rock mechanics and engineering 11 (4)
(1992) 323–331.

[14] H.G. An, X.T. Feng, The researchof evolutionaryfinite elementmethod of the stability
and optimization at large cavern group, Soil Mechanics 22 (4) (2001) 373–377.

[15] H.G. An, X.T. Feng, S.J. Li, Studying the parallel evolutionaryneural network andfinite
element method for large cavern group stability and optimization—Part 1:theory
model, Chinese journal of rock mechanics and engineering 22 (5) (2003) 706–710.

[16] X.T. Feng, Introduce of Intelligent Rock Mechanics, Science (in Chinese), Beijing,
2000.

[17] H. Huang, R. Ooka, H. Chen, Optimum design for smoke-control system in
buildings considering robustness using CFD and Genetic Algorithms, Building and
Environment 44 (2009) 2218–2227.

[18] S.Y. Li, L.J. Ding, L.J. Zhao, Underground excavation shape optimization using an
evolutionary procedure, Computers and Geotechnics 32 (2005) 122–132.

[19] J. Kennedy, R.C. Eberhart, Particle swarm optimization, IEEE International
Conference on Neural Network Perth (1995) 1942–1948.

[20] O. Begambre, J.E. Laier, A hybrid Particle Swarm Optimization—Simplex algorithm
(PSOS) for structural damage identification, Advances in Engineering Software 40
(2009) 883–891.

[21] R.E. Pereza, K. Behdinan, Particle swarm approach for structural design
optimization, Computers and Structures 85 (2007) 1579–1588.

[22] V.N. Vapnik, An overview of statistical learning theory, IEEE Trans Neural Network
10 (5) (1999) 988–999.

[23] J.A.K. Suykens, J. Vandewalle, Least square support vector machine classifiers,
Neural Processing Letters 9 (3) (1999) 293–300.

[24] V. Lute,A.Upadhyay,K.K. Singh, Support vectormachine basedaerodynamicanalysis
of cable stayed bridges, Advances in Engineering Software 40 (2009) 830–835.

[25] M.Y. Cheng, Y.W. Wu, Evolutionary Test article sample title placed here,
Automation in Construction 18 (5) (2009) 597–604.

[26] P. Samui, Support vector machine applied to settlement of shallow foundations on
cohesionless soils, Computers and Geotechnics 35 (2008) 419–427.
l construction using a hybrid arithmetic based on Support Vector
10.1016/j.autcon.2010.11.016

http://dx.doi.org/10.1016/j.autcon.2010.11.016

	Feedback analysis of tunnel construction using a hybrid arithmetic based on Support Vector Machine and Particle Swarm Optim...
	Introduction
	Particle Swarm Optimisation and Support Vector Machine
	Particle Swarm Optimisation
	Support Vector Machine

	The tunnel feedback control method based on PSO-SVM
	Non-linear relationship expressed by SVM
	Feedback optimisation process

	Case study
	Engineering introduction
	Identification of geomechanical parameters
	Optimisation of shotcrete parameters

	Discussion
	Conclusion
	Acknowledgements
	References


