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Summary

Based on cusp-type catastrophe theory, a sample rock–rock model for studying the pillar
rockburst mechanism is presented in this paper. It is shown that the stiffness ratio, K, of the
roof and floor to the pillar plays an important role in the outbreak of instability. Additionally,
simple formulae for the deformation jump and the energy release are derived. Based on the
assumption that there exists a proportional relationship between the number of microseismic
events and microfractured elements, the theoretical microseismic event rate produced by the
double rock sample, loaded in series under uniaxial compression, is obtained. Using a newly
developed numerical code, RFPA2D, the progressive failure process and associated micro-
seismic behavior of the twin rock samples are simulated, which shows that the spatial dis-
tribution of microseismic events develops progressively from disorder at the initial loading
stage to order prior to the main shock. The numerically simulated results also confirm that a
soft roof and floor promote an unstable failure or collapse of pillars, while a stiff roof and
floor can lead to a stable failure of pillars. Additionally, the simulated results reproduce the
deformation jump and the energy release that occur during a pillar rockburst. It is demon-
strated that the proposed model properly simulates the pillar failure process.

Keywords: Cusp type catastrophe theory, numerical simulation, rockburst.

1. Introduction

Rockbursts are sudden, explosion-like events that occur deep underground, posing a

hazard to the safety of underground miners and causing damage to mine structures.

Rock-bursts inside any mining excavation are essentially rock failures due to alter-

ation of the virgin state of stress. Such alteration results directly from mining and



creating an opening through the rock mass. As mining depth increases, the influence

of seismic effects in a mine becomes more critical due to the progressive increase in

ambient stresses. Being a seismic event, a rock-burst usually results in damage to

underground workings. This is due to the uncontrolled disruption of the rock equilib-

rium and the release of the strain energy stored in the rock body (Cook, 1976).

Rockbursts represent only a small subset of the large set of seismic events that

occur in seismically-active mines. The following statement was made by Salamon

in 1993: ‘‘Virtually no systematic research has been done to elucidate the basis

of setting apart those seismic events which become rockbursts from those which

do not.’’ To make progress in understanding the process of rockbursts, it is essential

to create a tool which provides the opportunity to relate seismicity to induced

disturbances.

In the late 1950s and early 1960s, researchers proposed a simple analogy between

the violent failure of a rock sample in a soft-testing machine and the dynamic rock

fracture that occurs during rockbursts (Gill et al., 1993). With this analogy, the rock

specimen, being in a uniaxial compressive state of stress, acts as the fractured rock and

the loading system acts as the surrounding rock mass. In this way, a stiffness criterion

for instability can be obtained. If the post-peak stiffness of the rock specimen is less

than the load system stiffness, the equilibrium state becomes unstable and the failure

of the rock specimen is violent. Otherwise, the equilibrium state becomes stable and

failure occurs gradually. In most cases presented in the past, the system discussed

were composed of a rock specimen and a soft-testing machine. However, some prob-

lems arise with this approach (Tang et al., 1993). The first is that the surrounding rock

mass could be an inelastic body instead of an elastic body like the soft-testing machine.

The second is that no micro-seismic events can be produced in the loading machine in

the process of rock specimen failure. For the surrounding rock mass, however, some

microseismic events might be produced during the loading process. The third is that

the changes in seismic activity occurring in the unstable failure of rock are mainly

concentrated in the failed body of the rock mass and less attention is paid to the

surrounding rock mass which, in fact, could involve forewarning signs of seismic activ-

ity prior to the unstable failure associated with rockbursts.

During recent decades, extensive research has been focused on the mechanisms of

rockbursts and how to predict their occurrence. The various attempts have included:

the micro-gravity method, the rebound method, the drilling-yield method, and the

microseismic method. However, few approaches have been found to be particularly

successful. The reason for this may be: (1) that the precise physical mechanism of

rockburst is very complicated and, therefore, it is difficult to establish a simple

mechanical model for rockburst; and (2) that the seismic data monitored in situ are

not completely or appropriately utilized.

It is well known that rockbursts are discontinuity phenomena that behave drama-

tically. Therefore, it is very difficult to study them using traditional mathematical

techniques that focus on continuous behaviour. Catastrophe Theory, which is a part

of mathematics, is a theory about singularities that deals with the properties of dis-

continuities directly. It was developed by the French mathematician Thom (Saunders,

1980). Many discontinuous phenomena, such as slope instability, reservoir-induced

earthquakes, coal pillar bursting, rock specimen instability and fault movement, which
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have been mathematically intractable before, can be dealt with using Catastrophe

Theory (Henley, 1976; Cubiu and Shaw, 1976; Rice, 1983; Yin and Zheng, 1988).

Most rock pillar failures can be regarded as discontinuous, catastrophic phenomena.

Therefore, it is appropriate to use catastrophe theory to study rock pillar failure.

In the first part of this paper, based on cusp-type catastrophic theory, a double rock

sample model for studying the pillar rockburst mechanism is introduced. This is

invoked to enhance understanding of rockburst mechanisms, e.g. how a rockburst

occurs in terms of the interaction between the failed rock mass and the surrounding

rock mass. In the second part, the progressive failure process and associated seismic-

ity in rock samples is simulated with a newly developed numerical code, RFPA2D.

Specifically studied is the influence of the relative stiffness between roof and floor on

pillar failure under a uniform vertical displacement boundary. In addition, the sudden

stress drop and deformation jump that occur during the process of unstable pillar

failure is examined. Agreement is then sought between the observed phenomena

and the cusp-type catastrophe model, which addresses the properties of discontinui-

ties directly.

2. Theoretical Considerations

2.1 A Brief Introduction to Catastrophe Theory

As described by Saunders (1980), a system whose behaviour is usually smooth but

sometimes (or in some places) exhibits discontinuities is considered here. It is sup-

posed that without much loss the state of the system at any time can be completely

specified by supplying the values of n variables (x1, x2 . . . xn), and that the system is

under the control of m independent variables (p1, p2 . . . pm), with the values of these

variables determining those of the xi. The xi are referred to as state variables and the pi
as control variables.

Based on an understanding of Catastrophe Theory, the number of qualitatively

different configurations of discontinuities that can occur depends not only on the

number of state variables, which may be very large, but also on the number of control

variables. In particular, if the number of control variables is not greater than four, then

there are only seven distinct types of catastrophes, and in none of these are more than

two state variables involved. One of them, called a cusp catastrophe, has two control

variables and one state variable, and will be used in this paper. Its standard form of

potential V(x) is as follows:

VðxÞ ¼ 1

4
x4 þ p

2
x2 þ qx; ð2:1Þ

where x is the state variable and p, q are the control variables. The phase space is

thus three-dimensional. It is defined that the equilibrium surface, M, is given by the

equation

rxV ¼ 0; ð2:2Þ
where the subscript x indicates that the gradient is with respect to the state variable

only. This surface is made up of all the critical points of V, i.e., all the equilibria (stable

or otherwise) of the system. M is denoted to indicate that it is a manifold, that is a
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well-behaved smooth surface. For the cusp catastrophe, the equilibrium surface M is

given by

rxV ¼ x3þ pxþ q ¼ 0: ð2:3Þ
Next it is easy to find the singularity set, S, which is the subset of M that consists of

all the degenerate critical points of V. These are the points at which rxV ¼ 0 and also

�� detfHðVÞg ¼ 0; ð2:4Þ
where H(V) is called the Hessian of V, the matrix of second order partial derivatives

as follows:
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where xi are state variables. This gives

r2
xV ¼ 3x2 þ p ¼ 0: ð2:5Þ

Then S is projected down into the control space C (by eliminating the state

variables from the equations that define it) to obtain the bifurcation set, B, which is

Fig. 1. The equilibrium surface and bifurcation set of the cusp catastrophe
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the set of all points in C at which changes occur in the form of V. So by eliminating x

from (2.3) and (2.5), we obtain the bifurcation set

4p3 þ 27q2 ¼ 0: ð2:6Þ
Finally, the form of V is determined at every point in C; this is easier than it sounds

because changes can occur only on B and it is sufficient to consider only one point

within each of the regions into which B divides C. It is easier to predict what will

occur for different paths in the neighborhood of B if the surface is sketched as in Fig. 1.

This is the set of equilibrium values of (x, p, q) for the cusp catastrophe (described by

Eq. (2.3)). Considering the state of the system as being represented by a point P in

three-dimensional phase space with x, p, q as coordinates, the phase point P must

always lie on the surface. In fact it must lie on either the top or the bottom sheet,

because the middle sheet corresponds to unstable equilibria.

The diagram can be interpreted as follows. The location of the point P is repre-

sented by a point in the p–q plane, which is called the control space. As the control

variables p and q are altered, this control point traces out a path which is called the

control trajectory. At the same time, the phase point moves along a trajectory in the

equilibrium surface, directly above the control trajectory. Smooth variations in p and q

almost always produce smooth variations in x. The only exceptions occur when the

control trajectory crosses the bifurcation set B (described by Eq. (2.6)), which is the

projection onto the p–q plane of the folds of the equilibrium surface. If the phase point

happens to be on the surface that ends at this point then it must jump to the other sheet.

This brings about a sudden change in x.

2.2 A Mechanics Model of the Rock–Rock

(Hypocenter-Surrounding) System

A sketch of a rock–rock (hypocenter-surrounding) system is shown in Fig. 2, in which

the rock in the hypocenter area and the rock in the surrounding area are substituted by

Fig. 2. Rock–rock (hypocenter-surrounding rock) sample model
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an equivalent specimen-spring system interacting in series. The word ‘‘spring’’ is used

for the surrounding rocks because they are assumed to be elastic and to have higher

strength than the hypocenter. The instability behaviour of this system, which will be

discussed here invoking Catastrophe Theory, throws new light on problems that are

important to studies of instability.

During deformation, both the rock in the hypocenter area and the rock in the

surrounding area are subjected to the same tectonic movement. In the simplest case,

and if the process of deformation is viewed quasi-statically, the system is in equili-

brium, that is

Rf ¼ Rs; ð2:7Þ

where Rf is the load carrying capacity of rock in the hypocenter area (subscript f means

the rock in the failure area; in the fault model, f also expresses ‘‘fault’’), and Rs is the

force acting on the spring, that is, the surrounding rocks (so here, subscript s means

both ‘‘spring’’ and ‘‘surrounding’’). The force acting on the spring is given by (in the

elastic range)

Rs ¼ fsðusÞ ¼ ksus; ð2:8Þ
where ks is the stiffness of the surrounding rock and us is its deformation.

The force-deformation relationship of the rock in the hypocenter area is non-linear.

It can be seen that the feature of rock softening (weakening) is a prerequisite for

system instability. Therefore, it is key to the study of rock instability to establish a

constitutive law for rock that conforms to the actual reality of rock failure. The force-

deformation relationship has been given by the equation (Tang, 1993)

� ¼ E" � e�ð "
"0
Þm
;

where m is the shape parameter, defined as the homogeneity index of the rock. For

simplicity, let m¼ 1 in this equation, that is,

�ð"Þ ¼ E"e
� "

"0 ; ð2:9Þ

where E and "0 are coefficients determined by experiment.

For a hypocenter area with cross-sectional area A, and length L, Eq. (2.9) can be

expressed in terms of Rf , the loading carrying capacity of the rock, and uf , the rock

deformation, in the following form:

Rf ¼ ff ðuf Þ ¼ kf uf e
�uf

u0 ; ð2:10Þ

where kf ¼ EA
L

is the initial stiffness of specimen and u0 is the value of deformation

corresponding to the maximum load carrying capacity. For this Eq. (2.10), there exists

an inflection in the curve at the point u�f ¼ 2u0, the absolute value of its slope being

k�f ¼ kf e
�2.

2.3 Application of Catastrophe Theory

The most important step is to construct the potential function V of the system. The

variable uf (deformation of rock in the hypocenter area) can be used as the state
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variable of the system. It is easy to see from Fig. 2 that the whole energy of the system

can be expressed as follows:

V ¼ ðEs
e þ Ef

eÞ þ Ef
c; ð2:11Þ

where Es
e is the elastic energy stored in the surrounding rocks, Ef

e is the elastic energy

stored in the hypocenter region, and Ef
c is the energy consumed in the failure of the

rock. Thus, the following equation can be obtained:

V ¼ ðEs
e þ Ef

eÞ þ Ef
e ¼

ðuf
0

ff ðzÞdzþ
ðu0

0

fsðzÞdz

¼ kf u0

�
u0 � ðu0 þ uf Þe�

uf
u0

�
þ 1

2
ksu

2
s : ð2:12Þ

Considering us ¼ u1 � uf (u1 is the so-called far-field displacement), the potential

function of the system can be obtained by rewriting Eq. (2.12) as follows:

V ¼ kf u0

�
u0 � ðu0 þ uf Þe�

uf
u0

�
þ 1

2
ksðu1 � uf Þ2: ð2:13Þ

The equilibrium surface M is given by

rxV ¼ kf uf e
�uf

u0 � ksðu1 � uf Þ ¼ 0: ð2:14Þ
It is easy to see that the above equation is simply the equilibrium Eq. (2.7). The

singularity set is

r2
xV ¼ kf 1 � uf

u0

� �
e
�Mf

M0 þ ks ¼ 0: ð2:15Þ

It is easy to find that Eq. (2.15) is irrelevant to the far-field displacement u1, but is

relevant to the material parameter ks, kf, u0 and the state variable uf. That is to say the

singularity set in which the catastrophe may occur is determined only by the char-

acteristics of the mechanical system.

Now the cusp point can be obtained from

r3
xV ¼ kf

u0

uf

u0

� 2

� �
e
�uf

u0 ¼ 0: ð2:16Þ

The solution of this equation is

uf ¼ u�f ¼ 2u0; ð2:17Þ

which is the inflection point of the force-deformation curve.

In order to obtain the standard format of the cusp model, the Taylor series expan-

sion of Eq. (2.14) in uf ¼ u�f is used and the terms are taken up to the third-degree.

The following equation can be obtained.

kf u
�
f e

�
u�
f

u0 � ksðu1 � u�f Þ þ kf 1 �
u�f
u0

 !
e
�

u�
f

u0 þ ks

" #
ðuf � u�f Þ

þ kf

2u0

u�f
u0

� 2

 !
e
�

u�
f

u0

" #
ðuf � u�f Þ

2 þ kf

6u2
0

3 �
u�f
u0

 !
e
�

u�
f

u0

" #
ðuf � u�f Þ

3 ¼ 0:

ð2:18Þ
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Since u�f ¼ 2u0, Eq. (5.18) can be simplified as

3

2
1� ks

kf e�2

u1� u�f
u�f

 !" #
þ 3

2

ks

kf e�2
� 1

� �
uf � u�f
u�f

 !2

þ
uf � u�f
u�f

 !3

¼ 0; ð2:19Þ

x3 þ pxþ q ¼ 0: ð2:20Þ
This is the standard format of the cusp catastrophe model of the rock-specimen

system where x is the dimensionless state variable

x ¼
uf � u�f

u�f
ð2:21Þ

and

p ¼ 3

2
ðK � 1Þ ð2:22Þ

q ¼ 3

2
ð1 � K�Þ ð2:23Þ

K ¼ ks

kf e�2
¼ ks

k�f
ð2:24Þ

� ¼
u1 � u�f

u�f
: ð2:25Þ

The parameter K is the stiffness ratio of the surrounding rock’s stiffness ks to the

slope k�f at the inflection point of the rock force-deformation curve. Parameter �,
which is a dimensionless parameter correlated to far-field displacement u1, is called

the far-field displacement parameter (also called disturbance). From Eqs. (2.22) and

(2.23), it can be seen that the control variables p and q are governed by the stiffness K

and the far field displacement parameter �.
The relation between the state variable x and the control variables p and q is de-

scribed by Eq. (2.20). The bifurcation set is determined by Eq. (2.6), which is a half

parabolic curve and having its cusp at the coordinates (0,0). The control space is

divided into two parts by the bifurcation set. In the small area, there exist three

equilibrium points of which two are stable and one is unstable. In the large area, only

one stable equilibrium point exists. In the bifurcation set, there are two-equilibrium

states, one being stable and the other is unstable. If the control variables (p, q) vary

smoothly in the control space, the number of equilibrium points (or point) and the sta-

bility of the system will not change unless (p, q) crosses the bifurcation set. If they do,

it will cause a sudden change in state variable x.

2.4 Criterion for Instability

Because Eq. (2.6) is satisfied only when p � 0 (it is easy to see this from Fig. 1), the

necessary condition for the system to reach its catastrophe state is

K � 1 � 0: ð2:26Þ
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From Eq. (2.23) we have

ks � k�f � 0; ð2:27Þ

or

ksþ f 0f ðu�f Þ � 0: ð2:28Þ

That is to say, the necessary unstable condition is determined completely by the

internal characteristics of the system itself. For instance, the material properties play

an important role in the system behaviour besides geometric properties. If the rock is

strain hardening or ideally plastic in character then, from Eqs. (2.27) and (2.28), the

system must be stable. The instability will occur only when the rock has a softening

characteristic.

From Eq. (2.23), it can be seen that the control variable q will decrease when the

far-field displacement parameter � increases. The value of � when the bifurcation set is

crossed can be determined now by inserting Eqs. (2.22) and (2.23) into Eq. (2.26) as

follows:

� ¼ 1

K
1 �

ffiffiffi
3

p

3
ð1 � KÞ

3
2

� �
: ð2:29Þ

So for every value of K, there exist two values of �. The small value corresponds to the

right side of the bifurcation set (q> 0), in which state the so-called catastrophe only

causes a sudden change of the mathematical structure (the number of equilibrium

states and the stability), but do not cause any sudden jump in the state variable x.

Therefore, we are more interested in the state when the left side of the bifurcation set

(q< 0) is crossed, in which case the state of the system is unstable and a sudden jump

in the state variable x occurs.

2.5 Sudden Jumps in Rock Deformation or Rock Deformation

and Stress Drop

Now, it is time to determine the value of x corresponding to the control variables p, q

on the left side of the bifurcation set. In the case when Eq. (2.6) is satisfied, Eq. (2.20)

has a triple root x1¼ x2¼ x3¼ 0 when p¼ 0 and has three distinct real roots when

p< 0 as follows:

x1 ¼ 2
�p

3

� �1
2¼

ffiffiffi
2

p
ð1 � KÞ

1
2; ð2:30Þ

x1 ¼ x3 ¼ � �p

3

� �1
2¼�

ffiffiffi
2

p

2
ð1 � KÞ

1
2: ð2:31Þ

Thus a sudden jump in the state variable when the control variables cross the bifurca-

tion set can be calculated as follows (and as shown in Fig. 3):

�x ¼ x1 � x2 ¼ 3
ffiffiffi
2

p

2
ð1 � KÞ

1
2: ð2:32Þ
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The corresponding rock deformation jump in the unstable state is

�uf ¼ uf1 � uf2 ¼ u�f ��x ¼ 3
ffiffiffi
2

p
u0ð1 � KÞ

1
2 ¼ 3

ffiffiffi
2

p
u0 1 � ks

k�f

 !1
2

: ð2:33Þ

This is independent of the far-field displacement u1 and is only relevant to the

intrinsic properties of the system.

This deformation jump is shown in Fig. 4, expressed by points C and D. Points C

and D are the unstable equilibrium and stable equilibrium points, respectively. The

process of rock failure instability usually does not extend to complete rock failure, but

rather will slow down at point D, that is, from the unstable state C to the stable state D.

This is compatible with natural phenomena, e.g. earthquakes (just because an earth-

quake occurs in a region does not mean that the whole rock mass in this region will

fail completely and immediately).

The whole process of deformation can be divided into four stages:

1) From A to B (maximum strength). The deformation increases gradually;

2) From B to C. The deformation will obviously accelerate in this stage;

Fig. 3. The state jump that occurs when crossing the bifurcation set

Fig. 4. Rock deformation jump
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3) From C to D. A sudden jump occurs;

4) The unstable failure is terminated at D, and then returns to the normal state,

i.e., stable state.

The energy difference between the pre-jump and the post-jump states is

�U ¼ Uðx1Þ � Uðx2Þ ¼ x4
1 � x4

2 þ 2pðx2
1 � x2

2Þ þ 4qðx1 � x2Þ: ð2:38Þ
Substituting Eqs. (2.30) and (2.31) for x1 and x2 and jointly using Eq. (2.22),

one has

�U ¼ 1

3
p2 ¼ 3

4
ð1 � KÞ2: ð2:39Þ

Thus, the released energy is

�U ¼ 1

2
k�f u2

0ð1 � KÞ2: ð2:40Þ

Again, it can be seen that the energy released in the jump is independent of the far-

field displacement u1 and is only related to the intrinsic properties of the system, such

as the stiffness ratio, the geometrical properties and the material parameters. The

energy released in the jump will increase when the stiffness ratio K decreases. When

K ! 0, the released energy becomes a maximum:

�Vmax ¼ 1

2
k�f u2

0: ð2:41Þ

3. Numerical Simulation

There are two deficiencies in the theoretical considerations. One is that the interaction

among the elements has not been considered; the other is that the spatial distribution

of the microseismic events cannot be obtained. Numerical simulations may remedy

these deficiencies (Lockner and Madden, 1991; Lockner et al., 1992; Krajcinovic and

Sumarac, 1989).

In the numerical analyses provided here, the theory of elasticity was used to

estimate the stresses, and some strength criteria were applied to describe the rock

failure under axial loading. The rock failure process is actually the accumulation,

clustering and coalescence of microfractures, while the progressive development of

fracture damage accounts greatly for the formation of cracks. Therefore the mechan-

isms of rock breakage can be explored more deeply with the inclusion of damage

development. A statistical damage model seems to provide a good description of

progressive fracture development. The combination of statistical theory and numerical

models was found to be appropriate for modelling the progressive damage process for

brittle materials such as rock.

As we know, rock is a heterogeneous material. Statistically, it is assumed that the

local mechanical parameters are distributed following a certain probability distribu-

tion, based on previous work (Weibull, 1951; Hudson and Fairhurst, 1969). Weibull’s

distribution describes very well the experimental data obtained for the distribution of

heterogeneities in rock. Here we divided the specimen into many finite elements and

Pillar Rockbursts Mechanism 455



assumed that the elemental parameters (failure strength �c, elastic modulus Ec, etc.) of

rock follow Weibull’s distribution law. That is

’ð"sÞ ¼
m

"0

"s
"0

� �m�1

exp � "s
"0

� �m� �
; ð3:1Þ

where "s is the element parameter, "0 is the mean value of the element parameter and

m is the shape parameter. The shape parameter m is defined as the homogeneity index

of the rock (Tang et al., 1997; Tang, 1997). A larger m implies a more homogeneous

material and vice versa.

According to continuous damage mechanics (Krajicinovic and Silva, 1982), the

constitutive law of rock under uniaxial stress conditions can be expressed as

� ¼ E"ð1 � DÞ;

where � and E are the stress and the elastic modulus of the rock specimen, respec-

tively. D is the damage parameter. Based on the heterogeneous material model above,

the local strengths are distributed following a Weibull probability distribution. Each

element contains unequal numbers of defects and possesses a different strength. As a

load is applied, the stress of the local element increases. When the stress satisfies the

double elliptic strength criterion (Yu, 1998), the element will fail and be completely

damaged. Therefore, the proportion of the locally damaged elements measured in the

area is equivalent to the probability that an element fails. The damage parameter D can

be represented by the following equation:

D ¼
ð"

0

’ðxÞdx: ð3:2Þ

Therefore, we can obtain the constitutive law of rock under a uniaxial stress condition

as follows:

� ¼ E"ð1 � DÞ ¼ E" 1 �
ð"

0

’ðxÞdx
� �

: ð3:3Þ

It is believed that there must be a strong link between the rock damage and the

acoustic emission (AE). In other words, the AE activity indicates the extent of local

damage in rock, which is directly associated with the evolution and propagation of

fracturing within rock. Tang (1997) has derived the following important relationship

between the damage parameter D and the AE count N:

D ¼ N

Nm

¼
ð"

0

’ðxÞdx: ð3:4Þ

By recording the counts of failed elements and released energies when failure occurs,

the AE phenomena associated with the progressive failure process can be simulated.

Therefore, our elastic damage model not only can represent the irreversible micro-

structural rearrangement and continuous material degradation that occurs during the

failure process, but can also simulate seismicities during the material’s continuous

damage process.

Based on the interaction of the double rock mass, we simulated numerical-

ly the evolution process of the progressive failure leading to sudden fracture by
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using the Rock Failure Process Analysis code (RFPA2D). This allowed us to ex-

amine the progressive failure process visually on a continuous basis during the

loading process.

For the double rock sample model, it was assumed that the two samples have

two different Weibull probability density distributions. The rock properties were cho-

sen so as to simulate the brittle behavior of rock material. For sample 1, in order to

simulate the surrounding body of the rock mass, the mean compressive strength, �c
was set at 150 MPa; the mean elastic constant E was equal to 65 GPa and Poisson’s

ratio � ¼ 0:25. The homogeneity index, m, for the strength was 2 and for the elastic

constant, 10. For sample 2, in order to simulate the failed body of the rock mass, the

mean strength was set 30% higher. The size of the mesh was 200� 200 with 40000

elements to simulate a specimen with a size of 4000 mm� 4000 mm. The simulation

was limited to a two-dimensional problem.

Once the mechanical properties were assigned to the elements, the double speci-

men was compressed axially in displacement control mode to simulate a collapse

process leading to rockbursts. The total vertical boundary displacement of 30 mm

was divided into 100 steps, i.e. 0.3 mm for every step. The samples were loaded in

a displacement mode much like the displacement control method in a servo-controlled

laboratory test. With a step-by-step increase in external displacement in the axial

direction the stress states in some elements may satisfy the strength criterion. Such

elements will be damaged and weakened in response to the specified strength criteri-

on. The stress and deformation distribution throughout the specimen will be adjusted

instantaneously to arrive at the equilibrium state. Due to stress redistribution, the stress

state may get to the critical value and lead to further ruptures. The process is repeated

until there is no failure rupture element in the sample. Following that, external dis-

placement continues to increase. Finally, the system forms macroscopic fractures,

releasing the elastic energy stored in the elements as acoustic emissions throughout

the onset of element failures during the loading process. Thanks to stress redistribution

and long-range interactions, one key element failure may give birth to an avalanche of

additional ruptures among adjacent elements, leading to a ripple effect and releasing

more energy.

Each increment of the displacement is regarded as a disturbance induced by

mining. The numerical simulation is the same as for the elastic finite element method.

When the twin sample is loaded step by step, the positions of the elements change, and

so do the stresses and strains of the elements.

3.1 Progressive Failure Leading to the Collapse of a Single Pillar

When the applied boundary displacement increases, Fig. 5 shows the progressive

failure process obtained in the simulation. The relative stress distribution, stress-strain

and AE plots presented in Fig. 5 were calculated using the following equation:

�s

�c

¼ �1

�c

� S
�3

�c

; ð3:5Þ

where �s=�c represents the severity of an element or its proximity to failure. The

brightness of the gray shading in the plots indicates the stress levels (high¼white,
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low¼ black). The following stages were observed during the progressive failure

process:

1) During the initial loading phase (low stress level), a few fractures are localized

and relatively sparse, with only a few seismic events occurring. The stress-strain

behavior is nearly elastic during this stage (Stage A in Fig. 5). Therefore, this state

corresponds to the stable pillar deformation stage.

2) Then, a population of randomly located, non-interacting fractures is observed

in the left side of the pillar. Due to the heterogeneity of rock, the distribution of

fractures is not symmetrical; a few fractures occur only in the right foot of the pillar.

These sequences involve a limited number of isolated fractures because of the side

distribution of weak elements. The principal characteristic of this stage of deformation

is diffuse, heterogeneous microfracturing of the entire rock mass. The stress-strain

curve becomes non-linear in this stage (stage B in Fig. 5), and this stage is named the

sub-stable pillar deformation stage.

3) As microfracture damage accumulates, fractures become clustered, involving

more elements, leading to fracture interaction and development in the left side of

the pillar. As more damage accumulates, large clusters emerge before main fracture

Fig. 5. Numerically-simulated pillar failure process and the corresponding plots of stress-strain and
strain-AE
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nucleation. Meanwhile, the corresponding acoustic emission is evident. The stress-

strain curve shows strain-weakening behavior, with a small stress drop (stage C in

Fig. 6). Accordingly, this stage is attributed to an unstable pillar forewarning stage.

4) Eventually the number of failed elements increases drastically, mainly concen-

trating in the right area of the pillar, and clusters gradually in the central area. The pillar

becomes mechanically unstable, i.e. the elements in the weaker zone suddenly collapse,

forming a fault. At this time two large stress drops occur, which can be seen in stage D,

while the corresponding acoustic events are 5 times those in stage C. This semi-static

model does not enable the simulation of the dynamic shoot-off of rock, so many micro-

fractures occurring abruptly and the drastic stress drop can be regarded as the apparent

feature of pillar rockburst. Furthermore, it is clear from Fig. 6 that there exists a sudden

drop of displacement in this stage, which also demonstrates that this stage is the unstable

pillar failure stage (Stage D in Fig. 5).

5) The stress field of the fault concentrates around it, producing further micro-

fracture damage around and ahead of its tips. This stress concentration leads to another

new clustering of micro-fractures occurring at point E. However, both the stress drop

and the acoustic emission events are not stronger than those in point D. Nevertheless, a

macro shear fault is formed in this stage. Although the post micro-fractures become

fewer and fewer, the pillar retains a certain bearing capability. Therefore this stage is

called the residual pillar deformation (Stage E in Fig. 5).

It is worth noting that in Fig. 6 a sudden displacement jump occurs at point M

during the loading process. The maximum Y-displacement jump is 14 mm, while the

X-displacement jump is 3 mm, which is in agreement with the cusp-type catastrophe

model discussed above.

3.2 Rock Mass Reponse Test

Two single pillar models were constructed to investigate the effect of the loading

system stiffness on the failure mode and the induced seismic pattern in the rock mass.

Fig. 6. A sudden displacement drop at Point M of the pillar with the load increasing
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The pillar and host rock strength were the same in both models, but the rock mass in

the pillar was assumed to be relatively heterogeneous in terms of strength (Table 1;

m¼ 3). In model I, the roof and floor rocks were five times stiffer than the pillar,

whereas in model II, the elastic modulus for the roof and floor was half of the pillar

modulus, to simulate a soft loading condition. The material parameters used in the

models are summarized in Table 1.

The two-dimensional mesh for each model consisted of 320� 100 elements to

simulate a specimen with a size of 3200 mm� 1000 mm and the models were loaded

vertically in a displacement control mode. The total vertical boundary displacement of

50 mm was divided into 100 steps, i.e. 0.5 mm for every step.

Figures 7a–c and 8a–c show (a) the failure mode development with the vertical

displacement increasing, (b) the associated seismic source locations, and (c) the stress,

strain and acoustic emission records for pillars under a progressively increasing ver-

tical boundary displacement.

In the pillar with a stiff host rock (roof and floor), pre-peak nonlinearity was

caused by a dispersed microfracturing pattern (Fig. 7b, 0–0.55u) until a distinct shear

plane formed (0.56u) leading to the first strength drop at peak strength (Fig. 7c). The

shear plane was inclined at 53–63� to the loading axis (Fig. 7a and b). Fig. 7a shows

that the heterogeneity of the sample caused the formation of a relatively flat shear

nucleation zone (0.55u) in the center of the sample. This was preceded by the devel-

opment of localized seismic activity centers, causing a rock mass damage cluster

(0.50u–0.53u) due to the pillar’s heterogeneous strength. Moreover, new shear planes

occurred parallel to the former one, and some clustering fractures were formed be-

tween the two parallel shear planes (Fig. 7a, 0.62u–0.77u). The highest number of

seismic emissions and most released energy were observed during the first stress drop

when the shear zone formed (0.56u). Several additional stress drops in the post-peak

range (between 0.21 and 0.35% strain) were observed (Fig. 7c) when the shear zone

was extended to the pillar boundary (0.61u–0.69u). Each stress drop was associated

with an elevated emission count and elevated energy release rate (Fig. 7c).

When loaded with a soft host rock (Ehost¼ 0.5Epillar) with the same Poisson’s ratio

(Fig. 8a and c), the first shear fractures (e.g. 0.53u), and the ultimate shear planes at

the end of the failure process, formed almost in the diagonal direction (Fig. 7a). It is

necessary to note that the pre-peak stress-strain curves were almost identical (Figs. 7c

and 8c) for the two models. However, as expected, the rock loaded in a softer sys-

tem exhibited a more brittle post-peak failure pattern with a sharper post-peak slope.

Table 1. Material parameters for tests of stiffness effects

Model I Model II

Elasticity parameter roof and floor 300 GPa 30 GPa
pillar 60 GPa 60 GPa

Strength parameter roof and floor 200 MPa 200 MPa
pillar 200 MPa 200 MPa

Poisson’s ratio roof, floor and pillar 0.25 0.25
Homogeneity index Elasticity 20 20

Strength 3 3
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Fig. 7. a Maximum shear stress distribution with soft host rock (roof and floor). b Seismic source location
with stiff host rock (roof and floor)
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Although the concentrations of seismicity in the soft loading condition were fewer

than that in the stiff loading condition (Nmax¼ 1560 vs. 1080 at 0.55u and 0.56u,

respectively, when the through-going shear zone formed), almost two times as much

energy was released at this loading step (0.48 vs 0.26 at 0.55u). This indicates that soft

loading conditions can induce more dangerous failures.

Fig. 7c. Stress-strain, seismic event and seismic energy release with stiff host rock
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Fig. 8. a Maximum shear stress distribution with soft host rock (roof and floor). b Seismic source location
with soft host rock (roof and floor)
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In both cases, seismic emissions started at approximately one third of peak

strength (at the crack initiation level (Martin and Chandler, 1994) whereas noticeable

energy release was only observed at around 80% of the peak strength, i.e. when the

stress-strain curve deviated from an initial linearity, the internal energy release asso-

Fig. 8c. Stress-strain, seismic event and seismic energy release with soft host rock
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ciated with each event caused stress redistribution within the rock sample and this, in

turn, eventually led to failure propagation by shear-zone formation. Initially, this stress

redistribution process was dispersed, causing little deviation from linearity. When

nucleation zones or damage clusters developed, the overall response became non-

linear. Eventually, when the energy release was concentrated (Fig. 8c), as driven by

the soft loading system, the shear zone formed almost instantaneously and the post-

peak slope of the stress-strain curve was very steep. Post-peak energy release peaks

were observed when ‘‘rock bridges’’ failed as indicated by various seismicity clusters

(0.57u–0.69u; Fig. 7b). The AE count recorded before the peak varied little between

the two models (45–47% of all recorded events). However, 30% of the AE counts

were recorded during the shear-zone formation in the soft-loading system, as com-

pared to only 16% with the stiff host rock. As a consequence, fewer AE counts were

recorded after the main event in the soft loading system (23 vs. 39%). This sug-

gests that prolonged seismic activity may be an indicator of a relatively stiff loading

environment.

With respect to energy release, 75% more energy was released from the pillar with

a soft host rock for the chosen model parameters. 16 and 18% were released before the

peak, and 28 and 42% at the peak for the stiff and soft system, respectively. The

energy stored in the softer loading system drove the failure process and caused

the higher energy release during the shear-zone formation process. This left 39 and

22% of the energy release for ‘‘aftershocks’’ in the stiff and soft system, respectively.

However, in absolute terms, the total post-peak energy release was equal for the two

models because the soft system released 75% more energy, as indicated above.

Jaeger and Cook (1969) pointed out that, in a relatively stiff environment, the

dilation process of the failing rock is controlled and the rock mass strength is lost

gradually. Conversely, in soft mine settings, rock mass dilation is driven by energy

release from the surrounding rock mass which leads to rapid and violent failure,

possibly with rock ejection. The two models presented here illustrate and quantify

this process.

4. Summary and Conclusions

In this paper, a simple mechanical model was proposed for unstable rock failure under

the action of a loading system, and the mechanism of instability was studied using a

cusp-type catastrophe model. It was shown theoretically that the stiffness ratio, K, of

the machine to the specimen plays an important role in the outbreak of instability.

Simple formulae for the deformation jump and the energy release were derived. The

outcome of the research shows clearly that the stability characteristic of the rock–rock

(hypocenter surrounding rock) system is determined by the stiffness distribution in the

system and that the condition for instability is K> 1.

The physical process resulting in a rockburst is a damage evolution process stem-

ming from microseismic development to a sudden main shock owing to an interaction

between the two parts of the rock mass. The spatial distribution of microseismic

events prior to the main shock is transformed into a distribution along a narrow zone.

Based on the assumption that each failed element can contribute an increment of
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microseismicity, a simple statistical model was introduced and the qualitative micro-

seismic rate of the double rock sample was obtained.

By using the RFPA code, the interdependence of stress, strain, acoustic or

seismic emissions, and seismic energy release was illustrated, and the evolution

process of microseismic activity and its spatial distribution were simulated during

the rock pillar failure process. Research results have been given in this paper,

which indicate that using the RFPA code it is possible to predict the occurrence

of rockbursts when a sudden decrease in the microseismic rate occurs in one zone

while the microseismic rate continues to increase in an adjacent zone. The numeri-

cally simulated results are in fairly good agreement with the theoretical considera-

tions proposed and thus verify the reliability of catastrophe theory as applied to the

study of rock.
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