School of Engineering

ELEC4100: Electrical Systems

Singapore PSB

Trimester 3 - 2023 (Singapore)

NEWCASTLE

www.newcastle.edu.au CRICOS Provider 00109J

OVERVIEW

Course Description

In this course you will explore the operation and behaviour of electrical power systems. You will develop your knowledge of the physical and electrical properties of equipment used in power systems and develop the analytical techniques and practical skills required to plan, design, operate and evaluation of electrical power systems.

Academic Progress

Nil

Assumed Knowledge ELEC2132, ELEC3130, ELEC3410

Singapore PSB **Computer Lab**

Face to Face On Campus 5 hour(s) per Full Term

Lecture

Face to Face On Campus

3 hour(s) per week(s) for Full Term

Tutorial

Face to Face On Campus

1 hour(s) per week(s) for Full Term

Unit Weighting

Workload Students are required to spend on average 120-140 hours of

effort (contact and non-contact) including assessments per 10

unit course.

Requirements **Contact Hours**

CONTACTS

Course Coordinator Singapore PSB

Prof Andrew Fleming

Andrew.Fleming@newcastle.edu.au

+61 2 4921 6493 Consultation: By email

Teaching Staff Other teaching staff will be advised on the course Canvas site.

School Office School of Engineering (Callaghan)

SENG-ADMIN@newcastle.edu.au

+61 2 4921 5798

SYLLABUS

Course Content

The course material will be drawn from the following topic areas:

- Review of fundamental knowledge
- 2. Steady state system analysis
- 3. Voltage control
- 4. Fault studies
- 5. Frequency control in power systems
- 6. Transient and dynamic stability
- 7. Protection systems
- 8. Power quality and harmonic distortion
- 9. Transmission systems
- 10. Energy economics

Course Learning Outcomes

On successful completion of this course, students will be able to:

- 1. Identify types of equipment used in power systems and describe the physical and electrical properties of equipment.
- 2. Plan, design, operate, analyse and evaluate power systems.
- 3. Use computer based simulation to analyse power systems. Discuss the limitations of analysis tools in terms of planning, design and operation.
- 4. Discuss the issues associated with the operation of power systems, including technical and non technical.

Course Materials

Other Resources:

PowerWorld Simulator - version 12 (free for education) is available on Canvas, see
 Assessment -> Project folder

Recommended Text:

 D.J. Glover, M.S. Sarma, "Power Systems Analysis and Design", 621.31 GLOV edition 4,5 or 6

Required Reading:

- Course Notes published on Canvas.
- Course Lecture Notes published on Canvas weekly.

ASSESSMENTS

This course has 4 assessments. Each assessment is described in more detail in the sections below.

	Assessment Name	Due Date	Involvement	Weighting	Learning Outcomes
1	Project	After Computer Lab 1 (Lecturer will advise specific date)	Individual	15%	1, 2, 3, 4
2	Written Assignment	Week 6	Individual	20%	1, 2, 3, 4
3	Quiz	Week 8	Individual	15%	1, 2, 3, 4
4	Formal Examination	During formal examination period	Individual	50%	1, 2, 3, 4

Late Submissions The mark for an assessment item submitted after the designated time on the due date,

without an approved extension of time, will be reduced by 10% of the possible maximum mark for that assessment item for each day or part day that the assessment item is late.

Note: this applies equally to week and weekend days.

Assessment 1 - Project

Assessment Type Project

Purpose To undertake an in-depth simulation study of a power system

Description Modelling and analysis of power system using PowerWorld simulator

Weighting 15%

Length See project description document.

Due Date After Computer Lab 1 (Lecturer will advise specific date)

Submission Method Online

Assessment Criteria Achieving the stated project objectives, quality of discussion, written word

Return Method Online

Feedback Provided Online - Two weeks after submission. Written comments in the returned project, returned

electronically

Assessment 2 - Written Assignment

Assessment Type Written Assignment

Purpose To gain experience with analysing power systems.

Description Solution of problems on major topics

Weighting 20%
Due Date Week 6
Submission Method Online

Submit pdf file as a Turnitin assignment Correct answers and correct approach

Return Method Online

Assessment Criteria

Feedback Provided Online - Two weeks after submission. Written comments in the returned work, returned

electronically

Assessment 3 - Quiz

Assessment Type Quiz

PurposeTo provide feedback on progress at the mid-point of the course. **Description**Written time-limited test on topics covered in the first half of the course.

Weighting 15%
Due Date Week 8
Submission Method Online

Time-limited online Canvas test in multiple choice format, detailed solutions are forwarded to

Lecturer electronically, at the end of the test

Assessment Criteria Correct answers and correct approach

Return Method Online

Feedback Provided

Online - Two weeks after submission. Written comments in the returned Quiz paper, returned

electronically

Assessment 4 - Formal Examination

Assessment Type

Formal Examination

Purpose

The exam will assess student competency and understanding of course content.

Description

Final examination on the course content

Weighting

50%

Due Date

During formal examination period

Submission Method

Formal Exam

Assessment Criteria

Correct answers and correct approach

Return Method

Not Returned

Feedback Provided

In Person - On an individual basis upon request.

ADDITIONAL INFORMATION

Grading Scheme

This course is graded as follows:

Range of Marks	Grade	Description		
85-100	High Distinction (HD)	Outstanding standard indicating comprehensive knowledge and understanding of the relevant materials; demonstration of an outstanding level of academic achievement; mastery of skills*; and achievement of all assessment objectives.		
75-84	Distinction (D)	Excellent standard indicating a very high level of knowledge and understanding of the relevant materials; demonstration of a very high level of academic ability; sound development of skills*; and achievement of all assessment objectives.		
65-74	Credit (C)	Good standard indicating a high level of knowledge and understanding of the relevant materials; demonstration of a high level of academic achievement; reasonable development of skills*; and achievement of all learning outcomes.		
50-64	Pass (P)	Satisfactory standard indicating an adequate knowledge and understanding of the relevant materials; demonstration of an adequate level of academic achievement; satisfactory development of skills*; and achievement of all learning outcomes.		
0-49	Fail (FF)	Failure to satisfactorily achieve learning outcomes. If all compulsory course components are not completed the mark will be zero. A fail grade may also be awarded following disciplinary action.		

^{*}Skills are those identified for the purposes of assessment task(s).

Communication Methods

Communication methods used in this course include:

- Canvas Course Site: Students will receive communications via the posting of content or announcements on the Canvas course site.
- Email: Students will receive communications via their student email account.

Course Evaluation

Each year feedback is sought from students and other stakeholders about the courses offered in the University for the purposes of identifying areas of excellence and potential improvement.

Oral Interviews (Vivas)

As part of the evaluation process of any assessment item in this course an oral examination (viva) may be conducted. The purpose of the oral examination is to verify the authorship of the material submitted in response to the assessment task. The oral examination will be conducted in accordance with the principles set out in the Oral Examination (viva) Procedure. In cases where the oral examination reveals the assessment item may not be the student's own work the case will be dealt with under the Student Conduct Rule.

Academic Misconduct

All students are required to meet the academic integrity standards of the University. These standards reinforce the importance of integrity and honesty in an academic environment. Academic Integrity policies apply to all students of the University in all modes of study and in all locations. For the Student Academic Integrity Policy, refer to https://policies.newcastle.edu.au/document/view-current.php?id=35.

Adverse Circumstances

The University acknowledges the right of students to seek consideration for the impact of allowable adverse circumstances that may affect their performance in assessment item(s). Applications for special consideration due to adverse circumstances will be made using the online Adverse Circumstances system where:

- the assessment item is a major assessment item; or
- 2. the assessment item is a minor assessment item and the Course Co-ordinator has specified in the Course Outline that students may apply the online Adverse Circumstances system;
- 3. you are requesting a change of placement; or
- 4. the course has a compulsory attendance requirement.

Before applying you must refer to the Adverse Circumstance Affecting Assessment Items Procedure available at:

https://policies.newcastle.edu.au/document/view-current.php?id=236

Important Policy Information

The Help button in the Canvas Navigation menu contains helpful information for using the Learning Management System. Students should familiarise themselves with the policies and procedures at https://www.newcastle.edu.au/current-students/no-room-for/policies-and-procedures that support a safe and respectful environment at the University.

This course outline was approved by the Head of School on 24th August 2023. No alteration of this course outline is permitted without Head of School approval. If a change is approved, students will be notified and an amended course outline will be provided in the same manner as the original.

© 2023 The University of Newcastle, Australia

Graduate attribute	University of Newcastle Bachelor of Engineering Graduate Profile Statements	Taught	Practised	Assess ed	Level of capability
	Knowledge Base				
1.	1.1 Comprehensive, theory-based understanding of engineering fundamentals and/or the underpinning natural and physical sciences as applicable to the engineering discipline	V	Ø	Ø	4
2.	1.2 Conceptual understanding of the mathematics, numerical analysis, statistics and computer and information sciences which underpin the engineering discipline	V	Ø	Ø	4
3.	1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline	V	V		4
4.	1.4 Discernment of knowledge development and research directions within the engineering discipline	V	V		4
5.	1.5 Knowledge of contextual factors impacting the engineering discipline	Ø	Ø		4
6.	1.6 Understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the specific discipline	Ø	Ø	Ø	4
	Engineering Ability				
7.	2.1 Application of established engineering methods to complex engineering problem solving	V	$\overline{\checkmark}$		3-4
8.	2.2 Fluent application of engineering techniques, tools and resources	Ø	$\overline{\checkmark}$	$\overline{\square}$	3-4
9.	2.3 Application of systematic engineering synthesis and design processes	V	V		4
10.	2.4 Application of systematic approaches to the conduct and management of engineering projects		Ø		4
	Professional Attributes				
11.	3.1 Ethical conduct and professional accountability		$\overline{\checkmark}$		4
12.	3.2 Effective oral and written communication in professional and lay domains		V	V	4
13.	3.3 Creative, innovative and pro-active demeanour		$\overline{\mathbf{V}}$		4
14.	3.4 Professional use and management of information	Ø	\square	$\overline{\mathbf{A}}$	4
15.	3.5 Orderly management of self, and professional conduct		\square		4
16.	3.6 Effective team membership and team leadership		$\overline{\mathbf{A}}$		4