#### School of Environmental and Life Sciences

**BIOL1003: Professional Skills for Biological Sciences 1** 

Callaghan

**Semester 2 - 2023** 



# Course Description Students are introduced to the principles of scientific investigation and initiate the development of analytical and practical skills necessary for an active career in the diverse fields of modern biology. This equips the student for further studies in both lab-

biology. This equips the student for further studies in both labbased biotechnology and field based environmental biology subjects. Students will be taught practical laboratory and field skills together with experimental design, data evaluation and technical report writing within the context of a number of exciting

hands on biological investigations.

Requisites This course has similarities to BIOL1070 and BIOL1050. If you

have successfully completed either of these courses you cannot

enrol in this course.

Assumed Knowledge HSC Chemistry

HSC Mathematics Advanced or HSC Mathematics Standard

Contact Hours Callaghan Laboratory \*

Face to Face On Campus 3 hour(s) per Week for Full Term

Lecture

Face to Face On Campus
1 hour(s) per Week for Full Term

Tutorial

Face to Face On Campus

1 hour(s) per Week for Full Term

\* This contact type has a compulsory requirement.

10

Unit Weighting

Workload

Students are required to spend on average 120-140 hours of effort (contact and non-contact) including assessments per 10 unit course.

www.newcastle.edu.au CRICOS Provider 00109J



# **CONTACTS**

Course Coordinator

Callaghan

Prof Brett Neilan

Brett.Neilan@newcastle.edu.au

0421227477

Consultation: By appointment

**Teaching Staff** 

A/Pr Karl Hassan

Karl.Hassan@newcastle.edu.au

Dr Verlaine Timms

verlaine.timms@newcastle.edu.au

Dr Rose Upton

Rose.upton@newcastle.edu.au

**School Office** 

**School of Environmental and Life Sciences** 

Room C228 Chemistry Building

Callaghan

Science-SELS@newcastle.edu.au

+61 2 4921 5080 9am-5pm (Mon-Fri)

# **SYLLABUS**

**Course Content** 

Through undertaking scientific experiments in; biological chemistry, microbiology, fungi, plant & animal systems and ecology, students will be exposed to the theory and practice of:

The scientific method & philosophy of science

Experimental design, hypothesis testing & problem solving

Health & safety for laboratory work

Basic laboratory skills in biology, including microscopy, aseptic technique and informatics

Use of selected analytical measurement instruments, such as spectrometry Use of Lab books to organise and document experimental details and results

Data analysis, interpretation and presentation

Report Writing a) Effective use of Introduction, Methods, Results, Discussion format b)

Referencing c) Computer publishing skills

Working in teams

Ethics, Academic and personal/professional integrity.

# Course Learning Outcomes

#### On successful completion of this course, students will be able to:

- 1. Demonstrate an understanding of biological terminology and concepts;
- 2. Implement the scientific method and experimental design;
- 3. Use basic experimental apparatus to collect, process and interpret biological information;
- 4. Write reports and present data in the appropriate scientific format;
- 5. Recognise hazards and minimise risks to conduct safe biological investigations;
- 6. Effectively work in a team while maintaining ethical conduct in learning and research.

#### **Course Materials**

#### **Recommended Reading:**

 Freeman, Scott (2011): Biological Science 4th Ed. Pearson Education Henderson's Dictionary of Biology 14th Ed. Pearson Education

#### **Required Reading:**

 Learning materials including the laboratory manual are provided via the course Canvas site.



# **COMPULSORY REQUIREMENTS**

In order to pass this course, each student must complete ALL of the following compulsory requirements:

#### **Contact Hour Requirements:**

- Laboratory Induction Requirement - Students must attend and pass the induction requirements before attending these sessions. In order to participate in this course, students must complete a compulsory safety induction.

## **SCHEDULE**

| Week | Week Begins | Topic                                 | Learning Activity                                                                                                                                                                                                                                                       | Assessment Due                                                                                                                                                                                                          |
|------|-------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 17 Jul      | Course overview & safety induction    | Lab book Competence and<br>Report Writing<br>(NOTE: this lab session is<br>absolutely compulsory - no<br>exceptions!)<br>Lecture, tutorial and lab                                                                                                                      | Safety induction session Confirm laboratory enrolment and undertake safety induction (wear long pants, covered shoes, pulled back hair)  Please obtain your own course materials: Lab coat, safety glasses and lab book |
| 2    | 24 Jul      | Basic Skills & Light<br>Microscope I  | Calculation of molarity,<br>dilution, SI units and solution<br>preparation, setting up a<br>laboratory workbook, setting<br>up a microscope,<br>observation and quantitation<br>of cellular osmotic effects,<br>and using a haemocytometer<br>Lecture, tutorial and lab | Lab book preparation<br>(marked in class)<br>Calculations (4%),<br>Microscopy competence<br>(6%), Lab book<br>competence (2%)                                                                                           |
| 3    | 31 Jul      | Basic Skills & Light<br>Microscope II | Accurate and reproducible pipetting technique, standard curve preparation, microscope slide observation and interpretation Lecture, tutorial and lab                                                                                                                    | Lab book preparation<br>(marked in class)<br>Pipetting competence<br>(4%), Lab book<br>competence (2%)                                                                                                                  |
| 4    | 7 Aug       | Plant Development I                   | Analysis of plant structure<br>and development,<br>Application of plant hormone,<br>GA and examine its effect on<br>plant growth<br>Lecture, tutorial and lab                                                                                                           | Lab book preparation<br>(marked in class)<br>Lab book competence<br>(2%)                                                                                                                                                |
| 5    | 14 Aug      | Plant Development II                  | Observation and data collection, data presentation and statistical evaluation, synthesis of larger patterns from combined individual results, X-Y scatter plot, column plot with standard error Lecture, tutorial and lab                                               | Lab book preparation<br>(marked in class)<br>Lab book competence<br>(2%)                                                                                                                                                |
| 6    | 21 Aug      | Dilution & Spectrophotometry          | Spectrophotometry for<br>measuring quantities,<br>visually counting cell density,<br>making solutions and dilution<br>series, X-Y Scatter Plot.<br>Report template and                                                                                                  | Lab book preparation<br>(marked in class)<br>Lab book competence<br>(2%)                                                                                                                                                |



| Examination Period |        |                                            |                                                                                                                                        |                                                                                                            |
|--------------------|--------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                    |        | Examinati                                  |                                                                                                                                        | ,                                                                                                          |
| 13                 | 23 Oct | Exam Period                                | used in Weeks 1-11<br>Lecture only<br>No tutorial or lab<br>NA                                                                         | report due (20%) - Due via Turnitin                                                                        |
| 12                 | 16 Oct | Final Quiz                                 | Multiple choice quiz on theory behind safety, techniques and equipment                                                                 | Quiz (during lecture time slot) Microbial Ecology lab                                                      |
| "                  | 9 Oct  | Microbial Ecology Report                   | Writing Microbial Ecology Report (strongly recommend attendance at interactive online tutorial) No Lecture or tutorial                 | Microbial Ecology<br>Report writing in lab                                                                 |
| 11                 | 9 Oct  | Microbial Ecology Papart                   |                                                                                                                                        | Microbial Ecology                                                                                          |
|                    |        | Mid Teri                                   | n Break                                                                                                                                |                                                                                                            |
|                    |        |                                            | microorganisms, plotting<br>data<br>Lecture, tutorial and lab                                                                          | book competence (2%)                                                                                       |
| 10                 | 10 σσρ | Microorganisms                             | counting, colony isolation from streaked plates, identification of                                                                     | (marked in class) Gram Staining Competence (5%) Lab                                                        |
| 10                 | 18 Sep | Isolation and Identification of            | spectrophotometry for quantifying cell density, dilution series, plating and streaking Lecture, tutorial and lab Gram-staining, colony | Competence (5%) Lab book competence (2%)  Lab book preparation                                             |
| 9                  | 11 Sep | Aseptic Technique & Growing Microorganisms | Growing microorganisms, controlling sources of contamination,                                                                          | Lab book preparation<br>(marked in class)<br>Plate Streaking                                               |
|                    |        | Evolution                                  | sequences and infer evolutionary relationships via a phylogenetic "family tree" reconstruction Lecture, tutorial and lab               | Lab book competence (2%) Plant Growth lab report due (20%) -Due via Turnitin before beginning of lab class |
| 8                  | 4 Sep  | Molecular Ecology and Evolution            | No Lecture Retrieve DNA sequences from databases, align                                                                                | Lab book preparation (marked in class)                                                                     |
| 7                  | 28 Aug | Plant Growth Report                        | Writing Plant Growth Report (strongly recommend attendance at interactive online tutorial)                                             | Plant Growth Report writing in lab                                                                         |
|                    |        |                                            | reference guides<br>Lecture, tutorial and lab                                                                                          |                                                                                                            |

Callaghan Semester 2 - 2023



## **ASSESSMENTS**

This course has 3 assessments. Each assessment is described in more detail in the sections below.

|   | Assessment Name      | Due Date              | Involvement | Weighting | Learning<br>Outcomes |
|---|----------------------|-----------------------|-------------|-----------|----------------------|
| 1 | Examination: Class   | Week 12               | Individual  | 20%       | 1, 2, 3, 4, 5, 6     |
| 2 | Laboratory Exercises | Weeks 2-11            | Individual  | 40%       | 1, 2, 3, 4, 5, 6     |
| 3 | Reports - Laboratory | Week 8 - Plant Growth | Individual  | 40%       | 1, 2, 4, 5           |
|   | reports              | Week 12 - Ecology     |             |           |                      |

Late Submissions

The mark for an assessment item submitted after the designated time on the due date, without an approved extension of time, will be reduced by 10% of the possible maximum mark for that assessment item for each day or part day that the assessment item is late. Note: this applies equally to week and weekend days.

#### **Assessment 1 - Examination: Class**

Assessment Type In Term Test

**Description**To assess knowledge, understanding of concepts and interpretive skills

Weighting 20%
Due Date Week 12
Submission Method In Class

Assessment Criteria The purpose and benefit of the test is to assess students' understanding on a wide range of

professional skills in biological science and to provide the students with an opportunity to

reflect and consolidate their learning outcome of this course.

**Return Method** Not Returned **Feedback Provided** No Feedback

#### **Assessment 2 - Laboratory Exercises**

**Assessment Type** 

Assessment type Tu

Tutorial / Laboratory Exercises

**Purpose** The purpose of assessment of Lab Exercises is to enable students a continuous and hands-

on studying of fundamental biological lab skills, hence providing opportunities for effective

learning and improvement throughout the course.

**Description** Laboratory Exercises: Lab skill tests (24%) Lab book assessment (16%) - marked during lab

classes

Weighting 40%
Due Date Weeks 2-11
Submission Method In Class

Assessment Criteria The purpose of assessment of Lab Exercises is to enable students a continuous and hands-

on studying of fundamental biological lab skills, hence providing opportunities for effective

learning and improvement throughout the course.

Return Method In Class

Feedback Provided In Class - Feedback provided verbally while marking lab books

#### Assessment 3 - Reports - Laboratory reports

Assessment Type Report

**Purpose** To develop report writing ability.

**Description** Reports:

Plant Biology Report (20%)
 Ecology Report (20%)

Weighting 40%

**Due Date** Week 8 - Plant Growth

Week 12 - Ecology

Submission Method Online

Assessment Criteria Report writing meets the course objectives of knowledge acquisition and demonstrated

assimilation of data, upon reflection and analysis, to produce articulate and concise

documents which convey evidence-based understanding of the concepts and topics.

**Return Method** In Class **Feedback Provided** Online



### ADDITIONAL INFORMATION

#### **Grading Scheme**

This course is graded as follows:

| Range of Marks | Grade                       | Description                                                                                                                                                                                                                                            |
|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85-100         | High<br>Distinction<br>(HD) | Outstanding standard indicating comprehensive knowledge and understanding of the relevant materials; demonstration of an outstanding level of academic achievement; mastery of skills*; and achievement of all assessment objectives.                  |
| 75-84          | Distinction (D)             | Excellent standard indicating a very high level of knowledge<br>and understanding of the relevant materials; demonstration of<br>a very high level of academic ability; sound development of<br>skills*; and achievement of all assessment objectives. |
| 65-74          | Credit<br>(C)               | Good standard indicating a high level of knowledge and understanding of the relevant materials; demonstration of a high level of academic achievement; reasonable development of skills*; and achievement of all learning outcomes.                    |
| 50-64          | Pass<br>(P)                 | Satisfactory standard indicating an adequate knowledge and understanding of the relevant materials; demonstration of an adequate level of academic achievement; satisfactory development of skills*; and achievement of all learning outcomes.         |
| 0-49           | Fail<br>(FF)                | Failure to satisfactorily achieve learning outcomes. If all compulsory course components are not completed the mark will be zero. A fail grade may also be awarded following disciplinary action.                                                      |

#### Attendance

\*Skills are those identified for the purposes of assessment task(s). Attendance/participation will be recorded in the following components:

- Laboratory (Method of recording: Class roll will be recorded and students to check-in via attendance app)

80% of lab experiment classes (not including the optional report writing sessions) need to be attended

#### Communication Methods

Communication methods used in this course include:

- Canvas Course Site: Students will receive communications via the posting of content or announcements on the Canvas course site.
- Email: Students will receive communications via their student email account.
- Face to Face: Communication will be provided via face to face meetings or supervision.

#### **Course Evaluation**

Each year feedback is sought from students and other stakeholders about the courses offered in the University for the purposes of identifying areas of excellence and potential improvement.

#### **Oral Interviews (Vivas)**

As part of the evaluation process of any assessment item in this course an oral examination (viva) may be conducted. The purpose of the oral examination is to verify the authorship of the material submitted in response to the assessment task. The oral examination will be conducted in accordance with the principles set out in the <a href="Oral Examination (viva) Procedure">Oral Examination (viva) Procedure</a>. In cases where the oral examination reveals the assessment item may not be the student's own work the case will be dealt with under the <a href="Student Conduct Rule">Student Conduct Rule</a>.

#### **Academic Misconduct**

All students are required to meet the academic integrity standards of the University. These standards reinforce the importance of integrity and honesty in an academic environment. Academic Integrity policies apply to all students of the University in all modes of study and in all locations. For the Student Academic Integrity Policy, refer to https://policies.newcastle.edu.au/document/view-current.php?id=35.



# Adverse Circumstances

The University acknowledges the right of students to seek consideration for the impact of allowable adverse circumstances that may affect their performance in assessment item(s). Applications for special consideration due to adverse circumstances will be made using the online Adverse Circumstances system where:

- 1. the assessment item is a major assessment item; or
- 2. the assessment item is a minor assessment item and the Course Co-ordinator has specified in the Course Outline that students may apply the online Adverse Circumstances system;
- 3. you are requesting a change of placement; or
- 4. the course has a compulsory attendance requirement.

Before applying you must refer to the Adverse Circumstance Affecting Assessment Items Procedure available at:

https://policies.newcastle.edu.au/document/view-current.php?id=236

# Important Policy Information

The Help button in the Canvas Navigation menu contains helpful information for using the Learning Management System. Students should familiarise themselves with the policies and procedures at https://www.newcastle.edu.au/current-students/no-room-for/policies-and-procedures that support a safe and respectful environment at the University.

This course outline was approved by the Head of School. No alteration of this course outline is permitted without Head of School approval. If a change is approved, students will be notified and an amended course outline will be provided in the same manner as the original.

© 2023 The University of Newcastle, Australia