The University of Newcastle, Australia
Available in 2020

Course handbook


Complex analysis forms a basis for not only advanced mathematical topics (including differential equations, number theory, operator theory and others) but also for special functions of mathematical and quantum physics - subjects used to understand the world in which we live. The course covers fundamental knowledge in the theory of analytical functions with applications to definite integration and culminates with study of harmonic and special functions.

Availability2020 Course Timetables


  • Semester 2 - 2020

Learning outcomes

On successful completion of the course students will be able to:

1. Use analytical functions and conformal mappings;

2. Compute definite integrals using residue calculus;

3. Appreciate the existance of special functions and their use in a range of contexts.


  • Functions of complex variable.
  • Differentiation of functions.
  • Cauchy's integral theorem.
  • The calculus of residues. Series expansions.
  • Contour integration.
  • Conformal mappings and further results on analytic functions.
  • Harmonic functions.
  • Entire functions and infinite products.
  • Special functions.

Assumed knowledge


Assessment items

Written Assignment: Written Assignments

Quiz: Quiz - Class

Formal Examination: Examination: Formal

Contact hours



Face to Face On Campus 3 hour(s) per Week for Full Term

Tutorial work will be integrated with the lecture material.