The University of Newcastle, Australia
Available in 2020

Course handbook


Provides the essential mathematical techniques of Physical Science and Engineering. These are the methods of Multivariable Calculus and Differential Equations. Multivariable Calculus involves a study of the differential and integral calculus of functions of two or more variables. In particular it covers introductory material on the differential calculus of scalar and vector fields, and the integral calculus of scalar and vector functions. Differential Equations arise from mathematical models of physical processes. Also includes the study of the main analytical and numerical methods for obtaining solutions to first and second order differential equations.

Availability2020 Course Timetables


  • Semester 1 - 2020
  • Semester 2 - 2020

PSB Singapore

  • Trimester 2 - 2020 (Singapore)
  • Trimester 3 - 2020 (Singapore)

BCA Singapore

  • Semester 1 - 2020

Learning outcomes

On successful completion of the course students will be able to:

1. Identify and apply mathematical methods applicable to the differentiation and integration of functions of several variables and to ordinary differential equations.

2. Apply appropriate mathematical fundamentals to solve a specific mathematical problems involving functions of many variables

3. Apply mathematical models involving multivariable calculus and ordinary differential equations to solve mathematical problems

4. Effectively communicate and interpret solutions to mathematical modelling problems.


  • Real valued functions of several variables.
  • The differential operator "del".
  • Cylindrical and spherical coordinates.
  • General curves and surfaces.
  • Normals, tangents and tangent planes.
  • Double integrals.
  • Iterated integrals.
  • Triple integrals.
  • Line integrals.
  • Surface integrals.
  • Vector valued functions.
  • Divergence and Curl.
  • Line integrals of vector fields.
  • Green's theorem.
  • Stokes' theorem.
  • Divergence theorem.
  • Formulation of differential equations for simple physical processes
  • Interpreting solutions for first order differential equations using appropriate software.
  • Further studies of ordinary differential equations
  • Finding numerical solutions using Runge-Kutta methods via computer software.
  • Laplace transform methods for initial value problems.
  • Solving second order initial value problems with step function forcing terms.
  • Power series solutions to second order differential equations.
  • Boundary-value problems for partial differential equations.

Assumed knowledge

MATH1120 or MATH1220

Assessment items

Quiz: Quiz - Class

Formal Examination: Examination

In Term Test: Mid Semester Test

Quiz: Online quiz

Contact hours

BCA Singapore, Callaghan and PSB Singapore


Face to Face On Campus 4 hour(s) per Week for Full Term


Face to Face On Campus 2 hour(s) per Week for 11 Weeks starting in week 2