Available in 2021
Course code



10 units


3000 level

Course handbook


This course provides students with an understanding of simple model development, transfer functions, block diagram representation and analysis, and simple control systems. Most of the model development is based on simple unit operations and separation processes. Students will also learn the fundamentals necessary to design or evaluate a broad range of separation processes.

Availability2021 Course Timetables


  • Semester 2 - 2021

Replacing course(s)

This course replaces the following course(s): CHEE3731. Students who have successfully completed CHEE3731 are not eligible to enrol in CHEE3745.

Learning outcomes

On successful completion of the course students will be able to:

1. Suggest a separation method for a particular process requirement

2. Determine the type of equipment required

3. Make suggestions regarding the size, operating parameters, etc. based on design considerations such as throughput

4. Demonstrate knowledge of the fundamentals of process modelling

5. Work with commercial modelling packages


Topics to be covered in this course include:Part A - Process Modelling:

  1. Introduction: Mathematical models; Scope and coverage; Principles of formulations.
  2. Fundamental Laws: Continuity; Conservation of Energy; Equations of motion; Transport equations; Equations of state; Equilibrium; Chemical Kinetics.
  3. Examples of Mathematical Models of Chemical Engineering Systems; Ccontinuously Stirred Tank Reactors (CSTR); Plug-Flow Reactors; Single-component vaporisers; Multi-component flash drums; Batch reactors; Distillation columns.
  4. Steady-State Process Simulation (flow-sheeting): Introduction; Chemical Engineering software package training.

Part B - Separation Processes Individual unit operations studies include:

  • Filtration: Cake filtration theory, determination of the specific cake and medium resistance, constant pressure and constant volume operations, continuous filtration.
  • Drying: The mechanism of drying, equilibrium moisture content, drying rate curves, indirect and direct, adiabatic and non-adiabatic dryers, drying calculations, selection of equipment.
  • Evaporation: Single and multiple evaporators, boiling point elevation, economy and capacity, calculation of heating area, selection of evaporators.
  • Crystallisation: Equilibrium considerations, solubility curves and phase diagrams, stability of saturated solutions, crystal growth mechanisms and kinetics, the MSMPR model for continuous crystallisation.

Assumed knowledge

MATH1110 and MATH1120 or equivalent, and MATH2310. CHEE2695 and CHEE2315. ENGG1500

Assessment items

Written Assignment: Assignment A1

Written Assignment: Assignment A2

Written Assignment: Assignment B1

Written Assignment: Assignment B2

Written Assignment: Assignment B3

Quiz: Quiz

Formal Examination: Final Examination

Contact hours


Computer Lab

Face to Face On Campus 1 hour(s) per Week for Full Term


Face to Face On Campus 4 hour(s) per Week for Full Term

The University of Newcastle acknowledges the traditional custodians of the lands within our footprint areas: Awabakal, Darkinjung, Biripai, Worimi, Wonnarua, and Eora Nations. We also pay respect to the wisdom of our Elders past and present.