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ABSTRACT: This paper compares conventional limit-equilibrium results with rigorous upper and lower bound
solutions for the stability of simple earth slopes. The bounding solutions presented in this paper are obtained
by using two newly developed numerical procedures that are based on finite-element formulations of the bound
theorems of limit analysis and linear programming techniques. Although limit-equilibrium analysis is used widely
in practice for estimating the stability of slopes, its use may sometimes lead to significant errors as both kinematic
and static admissibility are violated in the method. Because there are no exact solutions available against which
the results of limit-equilibrium analysis can be checked, the present bounding solutions can be used to benchmark
the results of limit-equilibrium analysis. In addition, the lower bound solutions obtained also can be applied
directly in practice because they are inherently conservative.

INTRODUCTION
Background and Objectives

Because of its practical importance, the analysis of slope
stability has received wide attention in the literature. Limit-
equilibrium analysis has been the most popular method for
slope stability calculations. A major advantage of this approach
is that complex soil profiles, seepage, and a variety of loading
conditions can be easily dealt with. Many comparisons of
limit-equilibrium methods [see, for example, Whitman and
Bailey (1967), Fredlund and Krahn (1977), Duncan and
Wright (1980), and Nash (1987)] indicate that techniques that
satisfy all conditions of global equilibrium give similar results.
Regardless of the different assumptions about the interslice
forces, these methods (such as those of Janbu, Spencer, and
Morgenstern and Price) give values of the safety factor that
differ by no more than 5%. Even though it does not satisfy all
conditions of global equilibrium, Bishop’s simplified method
also gives very similar results. Partly because of this and partly
because of its simplicity, the slice method of limit-equilibrium
analysis proposed by Bishop (1955) has been used widely for
predicting slope stability under both drained and undrained
loading conditions. Because of the approximate and somewhat
arbitrary nature of limit-equilibrium analysis, concern is often
voiced about how accurate these types of solutions really are.
The answer to this question is particularly important in cases
where designs are based on slim margins of safety.

The following are objectives of the present paper: (1) To
present rigorous lower and upper bound solutions for the sta-
bility of simple slopes in both homogeneous and inhomoge-
neous soils; and (2) to check the accuracy of the method of
Bishop (1955) by comparing its solutions against those derived
from limit analysis. To overcome the difficulties of manually
constructing both statically admissible stress fields and kine-
matically admissible velocity fields, two newly developed nu-
merical procedures are used to calculate both upper and lower
bound solutions for the stability of simple earth slopes in both
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purely cohesive and cohesive-frictional soils. These numerical
procedures are based on finite-element formulations of the
bound theorems of limit analysis and the best lower and upper
bound solutions are obtained, respectively, by optimizing stat-
ically admissible stress fields and kinematically admissible ve-
locity fields using linear programming techniques.

Over the years, many limit-equilibrium computer codes
have been developed to locate the most critical failure surface
by using various search strategies. In this study, the limit-equi-
librium results are obtained from the well-known slope stabil-
ity computer code STABL with the option of Bishop’s sim-
plified method (Kim et al. 1997).

Limit Analysis Method

The limit analysis method models the soil as a perfectly
plastic material obeying an associated flow rule. With this ide-
alization of the soil behavior, two plastic bounding theorems
(lower and upper bounds) can be proved (Drucker et al. 1952;
Chen 1975).

According to the upper bound theorem, if a set of external
loads acts on a failure mechanism and the work done by the
external loads in an increment of displacement equals the work
done by the internal stresses, the external loads obtained are
not lower than the true collapse loads. It is noted that the
external loads are not necessarily in equilibrium with the in-
ternal stresses and the mechanism of failure is not necessarily
the actual failure mechanism. By examining different mecha-
nisms, the best (least) upper bound value may be found. The
lower bound theorem states if an equilibrium distribution of
stress covering the whole body can be found that balances a
set of external loads on the stress boundary and is nowhere
above the failure criterion of the material, the external loads
are not higher than the true collapse loads. It is noted that in
the lower bound theorem, the strain and displacements are not
considered and that the state of stress is not necessarily the
actual state of stress at collapse. By examining different ad-
missible states of stress, the best (highest) lower bound value
may be found.

The bound theorems of limit analysis are particularly useful
if both upper and lower bound solutions can be calculated,
because the true collapse load can then be bracketed from
above and below. This feature is invaluable in cases for which
an exact solution cannot be determined (such as slope stability
problems), because it provides a built-in error check on the
accuracy of the approximate collapse load.

Limit-Equilibrium Method

The limit-equilibrium method has been used to analyze
slope stability problems in soil mechanics for many years by
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assuming that soil at failure obeys the perfectly plastic Mohr-
Coulomb criterion [e.g., Fellenius (1926) and Terzaghi
(1943)]. However, over the last 30 years the analysis of slopes
using the limit-equilibrium method has been significantly re-
fined by using various methods of vertical slices [e.g., Bishop
(1955), Janbu (1954), Morgenstern and Price (1965), and
Spencer (1967)]. An excellent review of popular limit-equilib-
rium techniques for predicting slope stability can be found in
Nash (1987) or Graham (1984).

Using a global equilibrium condition, the limit-equilibrium
approach is purely static as it neglects altogether the plastic
flow rule for the soil (i.e., constitutive relation). If the soil at
failure is assumed to be a rigid perfectly plastic material obey-
ing an associated flow rule, then collapse mechanisms selected
by the limit-equilibrium method are usually kinematically in-
admissible. In addition, the static admissibility of the stress
field also is not satisfied, because some arbitrary assumptions
are made to remove statical indeterminacy and, more impor-
tantly, only a global equilibrium condition (rather than equi-
librium conditions at every point in the soil) is satisfied. Mich-
alowski (1989) showed that upper bound solutions based on
kinematically admissible rigid-block velocity fields (associated
with the linear Mohr-Coulomb criterion) also satisfy global
force equilibrium equations. Hence an upper bound limit anal-
ysis solution also may be regarded as a special limit-equilib-
rium solution but not vice versa. However, by no means can
these two methods be regarded as equivalent (Collins 1974;
Chen 1975). Based on the bound theorems of limit analysis,
it can be concluded that, in general, the limit-equilibrium
method is of an approximate and arbitrary nature and the re-
sults obtained from this method are neither upper bounds nor
lower bounds on the true collapse loads. Any attempt to val-
idate the limit-equilibrium approach by comparing different
limit-equilibrium solutions, without reference to a more rig-
orous analysis, is considered to be inconclusive.

PROBLEM OF STABILITY OF SIMPLE SLOPES

The slope geometry analyzed in this paper is shown in Fig.
1. Two types of analysis are considered: undrained stability
analysis of purely cohesive slopes and drained stability anal-
ysis of cohesive-frictional slopes. The purely cohesive soil un-
der undrained loading conditions is modeled by a rigid per-
fectly plastic Tresca yield criterion with an associated flow
rule. The strength of the cohesive soil is determined by the
undrained shear strength S,, which may increase linearly with
depth as is the case in normally consolidated clays (Gibson
and Morgenstern 1962; Hunter and Schuster 1968). Under
drained loading conditions, a perfectly plastic Mohr-Coulomb
model is used to describe the soil behavior. For this case, the
strength parameters are the effective cohesion ¢’ and the ef-
fective friction angle ¢’. Both of these quantities are assumed
to be constant throughout the slope. For simplicity, the effect
of seepage (or pore pressures) on the stability of cohesive-
frictional slopes has not been included in this study. The so-
lutions obtained are therefore only relevant for fully drained
loading conditions where the effect of pore pressures can be
neglected. Recent work by Miller and Hamilton (1989) and
Michalowski (1994) suggests that it is also possible to incor-
porate the effect of pore pressures in limit analysis, but this
extension will not be covered here. :

The solutions for the simple slopes considered in this paper
are relevant to excavations and man-made fills built on soil or
rock (Taylor 1948; Gibson and Morgenstern 1962; Hunter and
Schuster 1968; Duncan et al. 1987). Duncan et al. (1987) have
showed that stability charts for simple slopes also can be used
to obtain reasonably accurate answers for more complex prob-
lems if irregular slopes are approximated by simple slopes and
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FIG. 1. Geometry of Simple Slopes and Parameters for De-
scribing Increasing Strength with Depth in Slope Stability Anal-
ysis

carefully determined averaged values of unit weight, cohesion,
and friction angles are used.

FINITE-ELEMENT LIMIT ANALYSIS

Because of the difficulties of constructing statically admis-
sible stress fields manually, the application of limit analysis
has in the past almost exclusively concentrated on the upper
bound method (Chen 1975; Chen and Liu 1990). In fact, the
authors are not aware of any rigorous lower bound solutions
for the stability of slopes in cohesive-frictional soils. Although
the upper bound solutions may be used as an estimate for the
true collapse load, it is the lower bound solutions that are
generally more useful in practice, because they are inherently
conservative.

Finite-Element Lower Bound Limit Analysis

The use of finite elements and linear programming to com-
pute rigorous lower bounds for soil mechanics problems ap-
pears to have been first proposed by Lysmer (1970). Although
Lysmer’s procedure was potentially very powerful, its useful-
ness was limited initially by the slowness of the algorithms
that were available for solving large linear programming prob-
lems. In recent years, significant progress has been made in
developing more efficient algorithms for solving large linear
programming problems (Sloan 1988a). Detailed discussions of
the recent developments in finite-element formulations of the
lower bound theorem may be found in Anderheggen and
Knopfel (1972), Bottero et al. (1980), Sloan (1988b), and Yu
and Sloan (1991a,b). In this study, the formulation of Sloan
(1988b) has been used because it has proven to be very effi-
cient and robust when applied to large practical problems.

The lower bound formulation under conditions of plane
strain uses the three types of elements shown in Fig. 2. The
stress field for each of these elements is assumed to vary lin-
early. The extension elements may be used to extend the so-
lution over a semiinfinite domain and therefore provide a com-
plete statically admissible stress field for infinite half-space
problems. Because this paper is concerned mainly with the
stability of finite depth slopes resting on a firm base, extension
elements are needed only at the left and right boundaries of
the problems (shown in Fig. 4). In fact, the extension elements
shown in Fig. 2 can be used readily to extend the stress fields
into a semiinfinite domain if a slope in an infinitely deep layer
needs to be analyzed (i.e., the depth factor D = ), Examples
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FIG. 2. Elements Used for Lower Bound Limit Analysis

of how this can be done can be found in Yu and Sloan (1994).
As will be shown later in this paper, the depth factor has a
very small effect on the stability of slopes provided the value
of depth factor D is greater than approximately 4 [in agree-
ment with the slope stability charts presented by Taylor
(1948)]. It may therefore be reasonable to assume that the
stability solutions for a slope in a finite layer with a large D
value (say D = 4) would be very close to those of a slope in
a layer of infinite depth.

A lower bound solution is obtained by insisting that the
stresses obey equilibrium and satisfy both the stress boundary
conditions and the yield criterion. Each of these requirements
imposes a separate set of constraints on the nodal stresses. In
the lower bound finite-clement analysis, statically admissible
stress discontinuities are permitted at edges shared by adjacent
triangles and also along borders between adjacent rectangular
extension elements. The Mohr-Coulomb and Tresca yield
functions can be shown to plot as a circle in the 21, versus
(o, — o,) stress space, where 1,, is shear stress and o, and o,
are normal stresses. To avoid nonlinear constraints occurring
in the constraint matrix, a key idea behind the numerical lower
bound technique is to use an internal linear approximation of
the Mohr-Coulomb or the Tresca yield surface in the 21, ver-
sus (0, — O,) stress space.

In a typical lower bound analysis, a statically admissible
stress field is sought that maximizes either a collapse load over
some part of the boundary or the magnitude of body forces
acting within a region. Both the collapse load and soil unit
weight can be used to define an objective function for linear
programming calculations. In the simple slope problem con-
sidered in this paper, it is convenient to find a static stress field
that maximizes the unit weight. As a result, we will treat the
unit weight as the unknown and optimize it directly. A typical
lower bound mesh, together with the applied boundary con-
ditions, is shown in Fig. 4(a). Note that the rectangular exten-
sion elements are arranged to ensure that the computed stress
field is statically admissible throughout the slope, so that the
solution is a rigorous lower bound solution.

Finite-Element Upper Bound Limit Analysis

The first formulation of the upper bound theorem, which
used constant-strain triangular finite elements and linear pro-
gramming, appears to have been developed by Anderheggen
and Knopfel (1972) who analyzed plate problems. This for-
mulation was later generalized by Bottero et al. (1981) and
Sloan (1989) to include velocity discontinuities in plane strain

limit analysis. When these constant-strain finite-element for-
mulations are used, the grid must be arranged so that four
triangles form a quadrilateral, with the central node lying at
the intersection of the diagonals. If this pattern is not used, the
elements cannot provide a sufficient number of degrees of
freedom to satisfy the incompressibility condition that accom-
panies undrained failure (Nagtegaal et al. 1974). To overcome
this limitation, Yu et al. (1992) developed a six-noded qua-
dratic element for upper bound limit analysis. This formulation
can be used to model an incompressible velocity field without
resorting to special grid arrangements and also is more effi-
cient than an equivalent three-noded formulation with the
same number of nodes. However, it does suffer from the same
shortcomings as the formulation of Bottero et al. (1980) and
Sloan (1989), in that the direction of shearing for each velocity
discontinuity must be specified a priori. Very recently, a new
upper bound formulation that permits a large number of dis-
continuities in the velocity field has been derived by Sloan
and Kleeman (1995). This method is again based on the three-
noded triangle, but a velocity discontinuity may occur at any
edge that is shared by a pair of adjacent triangles, and the sign
of shearing is chosen automatically during the optimization
process to give the least-dissipated energy rate.

In this study, the upper bound formulation developed by
Sloan and Kleeman (1995) is used to calculate upper bound
solutions for slope stability. A typical constant-strain triangular
element used in the upper bound analysis is shown in Fig. 3.
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FIG. 3. Triangular Element Used for Upper Bound Limit Anal-
ysis
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FIG. 4. Typical Finite Element Meshes Used in Limit Analysis

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 1998 /3



Within each element, the velocities are assumed to vary line-
arly. Each node has two velocity components and each element
has p plastic multiplier rates A;, X, ... \,, where p is the
number of planes used to linearize the yield criterion.

An upper bound solution is obtained by requiring that the
velocity fields obey an associated plastic flow rule and satisfy
the velocity boundary conditions. Each of these requirements
imposes a separate set of constraints on the nodal velocities.
To remove the stress terms from the flow rule equations, and
thus provide a linear relationship between the unknown nodal
velocities and plastic multiplier rates, an external linear ap-
proximation to the yield surface in the stress space of 27,
against (o, — 0,) is employed to ensure that the solution ob-
tained is truly an upper bound.

In a typical upper bound analysis, a kinematically admis-
sible velocity field is sought that minimizes the amount of
dissipated power. The dissipated power can be expressed in
terms of the unknown plastic multiplier rates and the discon-
tinuity parameters used to define an objective function [see
Sloan and Kleeman (1995)]. For the slope stability problem
considered in this paper, we will minimize the unit weight
directly and this can be achieved by equating the power ex-
pended by the external loads to the internal power dissipation
[see Sloan (1995) for details]. A typical upper bound mesh is
shown in Fig. 4(b). This is very similar to the equivalent lower
bound grid of Fig. 4(a) except that the extension elements are
no longer necessary because a rigid velocity boundary condi-
tion used in the upper bound limit analysis will ensure that the
solution obtained is a rigorous upper bound.

RESULTS FOR UNDRAINED STABILITY OF SLOPES

The results of undrained slope stability calculations using
the upper and lower bound methods of limit analysis and Bish-
op’s limit-equilibrium method are presented in Figs. 5-9 for
slope angles of B = 75, 60, 45, 30, and 15°, respectively. Note
that the top and bottom solid lines are used to represent nu-
merical upper and lower bound solutions. The solutions from
the limit-equilibrium computer code STABL are plotted as the
dashed lines. For each slope angle, the results for four different
depth factors of D = 1, 1.5, 2, and 4 are given. To account for
the effect of increasing strength with depth, the results are
presented in terms of the stability number N, = yH/s o, = YHF/
8,0 against a dimensionless parameter \., = pH/si, = pHF/s,,
where vy is the unit weight of the soil, p denotes the rate of
increase of the undrained shear strength with depth (Fig. 1),
and s, and s}, denote, respectively, the actual (or available)
shear strength and the mobilized strength of the soil. Note
that for undrained cases, the factor of safety is defined as F =
SuolS o

In the undrained limit analyses, for given p and slope ge-
ometry parameters of H, D, B, and mobilized shear strength
su0, the upper and lower bound programs are used to obtain
the best upper and lower bounds on the unit weight y. Once
this is known, the stability number Ny = yH/s}, = YHF/s,, and
the dimensionless parameter A\, = pH/sy, = (pHF)/s,, can be
calculated. On the other hand, when the limit-equilibrium code
is used, we first set the values of H, D, vy, B, S., and p and
then determine the safety factor F. As a result, the stability
number Nr = (YHF)/s,, and the dimensionless parameter A,
= (pHF)/s,, can be calculated.

For almost all the cases considered, Figs. 5—9 show that the
exact solutions are bracketed within 5—10% by the upper and
lower bound solutions. The comparison of the bounding so-
lutions with the limit-equilibrium results can best be consid-
ered separately for soils with a constant undrained shear-
strength profile and those with increasing strength with depth.
If the undrained shear strength of the soil is constant (A, =
0), Bishop’s limit-equilibrium solutions are found to be in

good agreement with the rigorous upper and lower bounds.
On the other hand, if the undrained shear strength of the soil
increases linearly with depth (., > 0), the limit-equilibrium
results are generally close to the upper bound solutions for
steep slopes. When the slope angle is less than 30°, the limit-
equilibrium analysis tends to underestimate the true stability
number. This underestimation is particularly significant when
B = 15° and A, > 0.5. For example, Fig. 9 shows that when
D =4, 8 = 15° and A, = 1.0, the limit-equilibrium method
underestimates the true stability number by as much as 35%.

In summary, the Bishop limit-equilibrivm method produces
reasonably accurate solutions for the stability of homogeneous
slopes. For slopes in soils whose strength increases with depth,
significant underestimation of the stability number can be ob-
tained from the limit-equilibrium analysis for slopes with a
low slope angle and a high A, value.

As far as the effect of increasing strength with depth is
concerned, it is most interesting to note that the bounding so-
lutions suggest that the stability number increases approxi-
mately linearly with the value of A,. Fig. 10 presents the effect
of slope angle on the stability number for slopes with two
different A\, values and two different depth factors. As ex-
pected, for all the cases considered the stability number de-
creases with increasing value of the slope angle. The effect of
slope angle on the stability number is found to be more sig-
nificant for the slopes with a low value of depth factor and a
high X\, value.

Presented in Fig. 11 are the bounding solutions, which show
the effect of the depth factor on the stability number for slopes
with two different A, values and two different slope angles.
In general, these results indicate that the depth factor has a
small effect on the obtained stability numbers as long as the
depth factor is greater than 2. This is why slopes with a depth
factor greater than 4 (with infinite slopes as a special case
when D = «) have not been included in this study. For the
cases with low slope angles, the stability number decreases
slightly with increasing depth factor and then remains unchan-
ged when the depth factor is greater than 2. It is also noted
that the effect of the depth factor for slopes with a constant
undrained shear-strength profile is more significant than for
cases with increasing strength with depth. This is because a
slope is more likely to fail along a slip surface that passes
through or above the toe when the strength increases with
depth.

Example of Application

We now illustrate how the results presented in Figs. 5-9
can be used to determine the factor of safety for a clay slope.

Problem. A cut slope is to be excavated in a normally con-
solidated clay. The slope has the following parameters: the
slope angle B = 60°, the height of the slope is H = 12 m, the
depth factor is D = 1.5, and the soil unit weight is v = 18.5
kN/m’. The undrained shear stren§th of the soil on the top of
the slope surface is s, = 40 kN/m* and the rate of increase of
the undrained shear strength with depth is estimated as p =
1.5 kN/m®. What is the factor of safety of this soil slope
against undrained failure?

A procedure for using the results of the present study to
solve the foregoing slope stability problem can be summarized
as follows:

1. From the values of v, H, s,, and p, we can calculate the
dimensionless parameters yH/s,o = (18.5 X 12)/40 = 5.55
and determine the ratio of Ne/h,, = [(YH/s,o)FV[(pH/
s.0)F] = vy/p = 18.5/1.5 = 12.33.

2. With B = 60° and D = 1.5, it follows that the results
presented in Fig. 6(b) should be used to determine the
safety factor.
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3. In Fig. 6(b), draw a straight line passing through the limit-equilibrium solutions of the factor of safety can be
origin with a gradient of y/p = 12.33. This straight line calculated as F = Ng/(yH/s o) = 1.23, 1.41, and 1.44,
will intersect with the three curves representing the lower
bound, upper bound, and Bishop’s limit-equilibrium so- RESULTS FOR DRAINED STABILITY OF SLOPES

lutions.

4. From these three intersection points, we can back-figure Drained slope stability calculations using the upper and
the following stability numbers N, = 6.8, 7.8, and 8.0, lower bound methods of limit analysis and Bishop’s limit-
from which the lower bound, upper bound, and Bishop’s equilibrium method have been carried out with four values of
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the depth factor D = 1, 1.5, 2, and 4. As in the undrained
cases, the drained results suggest that the effect of the depth
factor on the stability of cohesive-frictional slopes is very
small once the depth factor exceeds approximately 2. This is
because for most cases (except for slopes with a very low
slope angle and an unrealistically low friction angle) the crit-
ical failure surface tends to pass through the toe for cohesive-
frictional slopes (Taylor 1948; Chen 1975).

To compare the present bounding solutions with the limit-
equilibrium results, the solutions for the drained stability of
slopes are presented in terms of the stability number N =
YH/c,, = (YHF)/c' against a dimensionless parameter A, = yH
tan &,/c,, = (YH tan ¢')/c’, where ¢’, ¢’, and c,,, ., denote,
respectively, the actual soil cohesion and friction angle and
mobilized cohesion and friction angle. For drained stability,
the factor of safety is defined as F = c¢'/c,, = tan ¢'/tan ¢,
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The dimensionless parameter A, was introduced by Janbu
(1954) and later used by Cousins (1978) among many others
to develop stability charts for cohesive-frictional slopes. A ma-
jor advantage of using Janbu’s parameter to develop a stability
chart is that for a given slope with known soil-strength para-
meters, slope angle, unit weight, slope height, and depth factor,
the safety factor can be obtained without resorting to an iter-
ative procedure. This is so because, with the assumption of
the safety factors for both cohesion and friction angle being
equal, the parameter A, is no longer a function of the safety
factor F.

In the present drained limit analyses, for given values of H,
D, B, c,, and ¢, the upper and lower bound programs are
used to determine the best upper and lower bound solutions
of the unit weight vy from which the stability number N, =
yH/c,, = (yHF)/c' and Janbu’s dimensionless parameter A, =
+vH tan ¢, /c,, = (yH tan ¢')/c’ can be calculated. In the limit-
equilibrium analysis, we first set the values of H, D, vy, B, ¢’,
and ¢’ and therefore the dimensionless parameter Ay = (YH
tan ¢')c’ and then determine the safety factor F from which
the stability number Nr = (YHF)/c' is calculated.

The results from the upper and lower bound calculations
and the limit-equilibrium analyses are presented in terms of
the stability number N = (yHF)/c' against A, in Figs. 12—
15 for four slope angles and four depth factors. Figs. 12-15
indicate that the upper and lower bound solutions generally
close together and converge rapidly when the slope angle de-
creases. Again, it is observed that the difference between the
upper and lower bound solutions increases slightly as the depth
factor is increased. This is caused by the effect of the mesh
densities on the results of the numerical limit analyses. Figs.
14 and 15 show that when the slope angle B = 45° a remark-
ably good agreement is observed between the upper and lower
bound solutions with a maximum difference being less than
5%. It is evident from these figures that the limit-equilibrium
analysis produces accurate stability numbers for homogeneous

cohesive-frictional slopes, although they are generally closer
to the lower bound solutions.

Example of Application

We now demonstrate how the results presented in Figs. 12—
15 can be used to determine the factor of safety for a given
soil slope with known geometry and actual soil strength.

Problem. A simple soil slope has the following properties:
the slope angle B = 45° the height of the slope is H = 9 m,
the depth factor is D = 2, the soil unit weight is y = 19 kN/
m®, the soil strength is defined by ¢’ = 20 kN/m?, and ¢’ =
35°. What is the factor of safety of this soil slope against
failure?

A simple procedure for using the results of the present study
to solve the foregoing slope stability problem may be sum-
marized as follows:

1. From the values of v, H, ¢’, and ¢’, we can calculate’
Janbu’s dimensionless parameter: N, = (YH tan ¢')/c’
= (19 X 9 X tan 35°)/20 = 5.99.

2. With B = 45° and D = 2, it follows that the results pre-
sented in Fig. 14(c) should be used to determine the
safety factor.

3. From A, = 5.99 as calculated in 1, Fig. 14(c) can be
used to give the stability numbers of N = yHF/c' =154,
16.3, and 17.5 corresponding to lower bound, limit-equi-
librium, and upper bound solutions, respectively.

4, With y = 19 kN/m®, H = 9 m, ¢’ = 20 kN/m?, and the
derived values of Janbu’s parameter N = 15.4, 16.3, and
17.5 from 3, the lower bound, limit-equilibrium, and up-
per bound solutions of the factor of safety are calculated
as F = cN:/(yH) = 1.8, 1.91, and 2.05.

CONCLUSIONS

The following main conclusions can be drawn from the re-
sults presented in this paper:
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1. For most cases considered in this study, it is found
that the exact stability solution for both drained and un-
drained slopes can be predicted to within 5-10% by the
present numerical upper and lower bound solutions.

2. For the special case of homogeneous slopes, the numer-
ical upper bound solutions obtained for slopes with a
large depth factor are slightly higher (i.e., worse) than
Chen’s upper bounds for slopes in an infinitely deep
layer with a failure surface passing below the toe (Chen
1975). The lower bound solutions obtained in this paper
are the most valuable results for two reasons: few rig-
orous lower bound solutions exist for slope stability
problems in the literature and the lower bound solutions
can be used in practice to give a safe design.

3. A detailed comparison of the present bounding solutions
with those from the Bishop limit-equilibrium method
suggests that although the limit-equilibrium analysis
gives reasonable solutions for homogeneous slopes, it
tends to underestimate the true stability solution signifi-
cantly for inhomogeneous slopes with a low slope angle.

4. For undrained slopes, the increasing strength with depth
has a significant effect on the stability number. It is in-
teresting to note that the stability number increases ap-
proximately linearly with the values of the dimensionless
parameter A,
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