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In solving nonlinear problems of solid mechanics by the finite-element method, stresses at integration
points are usually obtained by integrating nonlinear constitutive equations, given known incremental
strains. In a large-deformation analysis, stress—strain relationships must be frame independent such that
any rigid-body motion does not induce strain within the material. This principle is generally satisfied by
introducing an objective stress rate, such as the Jaumann or Truesdell stress rates, into the constitutive
equations. This paper investigates three alternative algorithms for integrating stress—strain relationships
in a large-deformation analysis. It is shown that the effect of rigid-body motion is equivalent to a stress
transformation and this transformation can be introduced before, after or during integration of the
stress—strain constitutive equations. Although there is no theoretical advantage, in terms of accuracy, for
selecting one of these strategies over the others, in terms of efficiency of algorithms one is more
advantageous than the others. Performance of the proposed algorithms is studied and compared by
means of numerical examples. The results of this study can be used in the development of fast and robust
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algorithms for stress integration of constitutive equations in nonlinear finite-element analysis.
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1. Introduction

During an elastoplastic small-strain analysis by the finite-
element method, loads are usually applied in increments and the
corresponding incremental displacements are obtained by solving
global equilibrium equations. The incremental strains can be
computed from incremental displacements and these strains are
then used to determine stresses within the continuum. For
integration points that yield plastically the incremental stresses
are then obtained by integrating constitutive equations. In a large-
deformation analysis the stress—strain relations must be objective.
Objectivity requires that the constitutive equations must be frame
independent, i.e., rigid-body motions should not induce any strain
in the material. This principle is generally satisfied by introducing
an objective stress rate, such as the Jaumann or the Truesdell stress
rate, into the stress-strain relations, e.g., [4,5]. A brief overview of
how this has been achieved in practice is described below.

Hughes and Winget [9] introduced the concept of incremental
objectivity of a stress-integration algorithm and presented an
integration scheme for rate-type constitutive equations. The main
achievement of this algorithm was providing a convenient
framework for an objective transformation of the Cauchy stress
tensor due to rigid-body rotations based on the Jaumann stress

* Corresponding author. Fax: +61249216991.
E-mail address: majidreza.nazem@newcastle.edu.au (M. Nazem).

0168-874X/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/].finel.2009.09.006

rate. Pinsky et al. [12] stated that a stress-integration algorithm
for rate-type constitutive equations must satisfy three require-
ments: consistency, numerical stability, and incremental objec-
tivity. Based on the Lie derivative of a spatial tensor, they
developed an implicit stress-integration scheme with arbitrary
objective stress rates satisfying the above conditions. The
proposed scheme was then used to integrate constitutive
equations of hyperelastic, hypoelastic, and elastoplastic materials.

Rodriguez-Ferran and Huerta [13] presented two stress update
algorithms in large strain solid mechanics. The first algorithm,
based on the work by Bathe et al. [2], used the Green-Lagrange
strain tensor as the strain measure while the second algorithm
incorporated the midstep configuration, where the symmetrised
gradient of displacement increment was employed as the strain
measure. They discussed implementation aspects and accuracy of
the algorithms and found that the second algorithm is generally
more accurate than the first. However, it would appear that
efficiency of the algorithms was not studied by the authors. Later,
Gadala and Wang [8] compared different integration algorithms
for a rate-type constitutive equation based on the use of Jaumann
stress rate as well as Truesdell stress rate. They used an implicit
return mapping algorithm for integrating the constitutive equa-
tions and found that stress transformation due to rigid-body
motion can be applied either before or after return mapping.
Aspects of integrating constitutive equation involving large
deformations, particularly in geotechnical problems, were pre-
sented by Nazem et al. [10]. In this paper, the authors discussed
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problems with stress integration using a total-Lagrangian for-
mulation and they studied the accuracy of different stress rates in
an updated Lagrangian formulation.

Research on integration of constitutive equations in a large-
deformation analysis is usually devoted to studying the accuracy of
algorithms, mostly neglecting the question of their efficiency.
However, the computational time spent integrating the constitutive
equations in a nonlinear analysis is not negligible. Robust and efficient
algorithms can, of course, reduce the cost of analysis significantly. In
this paper, three alternative algorithms for integrating a rate-type
constitutive equation are presented. These algorithms are based on
the explicit integration scheme developed by Sloan [14]. Detailed
implementation of these algorithms is discussed. Efficiency as well as
accuracy of the algorithms are studied by solving the indentation of a
rigid footing and a consolidation analysis of a rigid footing, both
analyses requiring a large-deformation approach.

2. Stress integration
2.1. Small-strain problems

During a typical time step of a finite-element analysis, a set of
ordinary differential equations must be solved to find the stress
increment based on a known strain increment. This system of
equations my be written in the following form:

6y = Cinu
fC,‘ = Bi((f, K))

M

where ¢j; is the true (Cauchy) stress tensor, g; denotes the strain
tensor, K; represents a set of hardening parameters, B is a function
derived from the hardening laws, and
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in which C° represents the elastic stress-strain matrix, f is a yield
surface describing the elastic domain in stress space, g is the
plastic potential function, and A is a positive scalar called the
plastic multiplier.

Eq. (1) is a system of ordinary differential equations, which
needs to be integrated to determine the stress state. For a given
strain increment, this integration takes the form

Aey Agyy
t+At __ ot ep t+At __ .t 1
o = a,ﬂ—/o G0, K)degic; =K+ . Bi(o, K)d/
. Agy
=Ki+ Bi(a, K)Dy (0, K)dey “4)
0

in which D is a vector dependent on the current stresses and
hardening parameters.

A stress-integration scheme is termed explicit if all stress
dependent quantities such as the tensors C, B, and D are evaluated
at known stress states. Otherwise, it is called an implicit scheme.

Crisfield [6] provides a comprehensive discussion of various
stress-integration schemes. One of the most well-known implicit
integration schemes is the backward Euler algorithm which
employs an elastic predictor along with a plastic return mapping.
This scheme normally requires second-order derivatives of the
plastic potential as well as the yield function, making its
implementation difficult for complex yield surfaces. Sloan [14]
proposed an explicit algorithm with substepping and error

control. This scheme, on the other hand, requires the intersection
of stress path with the yield surface, which involves the solution
of a nonlinear equation.

2.2. Large-deformation problems

For large-deformation analysis, stress-strain relations can no
longer be expressed by Eq. (1) since components of true stresses
change due to possible rigid-body motion. In other words, rigid-
body rotation (or translation) must not change the strain in the
material. This condition is usually satisfied by introducing an
objective stress rate into the stress-strain relations. The choice of
the objective stress rate is not unique and the most commonly used
stress rates are the Jaumann stress rate (¢*/) and the Truesdell
stress rate (¢V7), which are each defined as follows (e.g., see [3]):

doj

v

O—,‘jj = dty — OikWjk — Wik O 5)
doji

%VT = dit'f +0jli — oy — Lo 6)

in which w and [ represent the spin tensor and the velocity gradient
tensor, respectively, as follows:

_ 1 /ov; an
wi=3(5-5) @
6v,»
ij = 87(1 (8)

where v; represents the velocity vector.

Introducing the Jaumann stress rate into small-strain consti-
tutive equations, the stress increment is found by integrating do
in Eq. (5) along a given strain increment:

A Agjj Awy
t+ At t t
ot A =gli+ . dojj = o}; +/0 (0 dwjx+ Tji doy)

Agyy
+ . Giju(o, K)dey 9)
where
1 /ou; an
L= (2 1
@i 2<axj 6x,-) (10)

and u; represents the displacement vector. Note that ((a, k) in (9)
refers to the constitutive matrix with respect to the configuration
at time t and is a function of the current Cauchy stresses. To
perform the integration in (9) a stress-integration scheme used for
small deformation has to be modified to include the additional
terms due to rigid-body motion. Considering the skew symmetry
of Awy;, it is possible to show that the integration of rigid-body
rotation in (9) is equivalent to a stress transformation [9]:

Ay
oh+ /0 (o doyj+ o5 doy) = Quay Qi 11
with
Qi = Bk — BAD) " G5+ (1 — HAwy) (12)

where f is an integration parameter varying between 0 and 1.
Therefore, the stress integration can be carried out as
~t ¢ t+AL_ at Acu ~ t+ At
G5 = QuoQuoy ™ = UU+/0 Cijt (G, 1) dey K
Ay

=K{+ Bi(6, K)Dy(6, K)dey (13)

The integration in (13) is almost identical to the integration in (4)
for small deformation. The only modification is that stresses at the
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start of the increment should be transformed according to the first
equation of (13). Therefore, standard integration schemes used for
small deformation, either explicit or implicit, can be used with this
formulation to update stresses and hardening parameters in (13).

Alternatively, one may integrate the stress-strain equation at
the start of the increment and then transform stresses according
to (11) as shown in the following:

Agyy

t+ At t t+ At
ol Al = Ojj + Cijkl(oa K)dSlei +

ij
~Agyy

= Kf+ Bi(0,K) - Diu(0, K)dey ;" AL = Quat AQy (14)

It is also possible to include rigid-body rotations by introdu-
cing the Truesdell stress rate into the constitutive equations.
Gadala and Wang [8] showed that the following stress transfor-
mation and stress integration is equivalent to the Truesdell stress
rate defined by (6):

Agjj

65+Ar — 0',§j+

1tIA[ t \tpt+ At Adu
ij dojj = 7 Fy o) Fi* +/0 Gijui(0, K)dey

(15)
where F denotes the deformation gradient defined by
axHAf
tpt+At _
Firat = al—x; (16)

and J is its determinant; x represents the spatial configuration of a
material point. The right superscript denotes the time when the
quantities are measured. Note that in an updated Lagrangian
formulation all quantities are measured with respect to the last
equilibrium configuration (i.e., at time t).

3. Alternative integration schemes

Eqgs. (9) and (15) show that the effect of rigid-body motion must
be introduced to the constitutive equations during stress integra-
tion. This effect can be introduced before, after, or during integration
of the constitutive equations, which provides three alternative
approaches. However, no obvious theoretical advantage exists for
selecting one of these strategies. Moreover, it would appear that
advantages and disadvantages of one strategy over the two others
have not yet been reported in the literature (e.g., see [8]). This study
attempts to compare alternative schemes for integrating the stress—
strain relations in a large-deformation analysis. In the following,
these algorithms are explained in more detail.

3.1. Algorithms based on schemes for small-displacement analysis

As mentioned before, effects of rigid-body motion can be
introduced either before or after integration of the constitutive
equations. For the formulation using the Jaumann stress rate, such
an approach results in two alternative stress-integration schemes
as shown by Egs. (13) and (14). The main advantage of this
approach is that the numerical schemes used to integrate the
constitutive equations for small displacement can also be used for
large-deformation analysis. To explain this approach in more
detail, we first present the following algorithms for correcting the
stresses due to rigid-body motion. Algorithm (a) applies to the
formulation using the Jaumann stress rate, while Algorithm (b)
applies to the formulation using the Truesdell stress rate.

Algorithm (a). Stress transformation for rigid-body motion
(Jaumann stress rate):

(1) Enter with stresses ¢ and the spin tensor increment Awj.

(2) Calculate Q; by

S o1
ij = (O,‘k — iAwik) (okj + wa"j> .

(3) Find 6% by 6§ = Quol,Q.

(4) Exit with corrected stresses 6'15».

Note that to ensure objectivity the spin tensor increment is
evaluated with respect to the configuration at the midpoint of a
load increment, i.e., $=0.5 in Eq. (12).

Algorithm (b). Stress transformation for rigid-body motion
(Truesdell stress rate):

tFijt+At' and

(1) Enter with stresses o, the deformation gradient
its determinant J.

(2) Compute ; by

1
—t tpt+ At -t \tpt+At
o= 7 Fi M) E .

(3) Exit with corrected stresses Efj.

The algorithms above can be applied either at the start of the
increment, leading to Algorithm 1, or applied at the end of the
increment, leading to Algorithm 2.

Algorithms 1(a) and (b). Transformation followed by integra-
tion:

(1) Enter with stresses oy, the strain increment Agy, and the spin
tensor increment Awj;.

(2) Call Algorithm (a) or (b) with ¢ and Aw; to find &fj.

(3) Call the stress-integration scheme with El?j and Ag; to find
aijt*-At.

(4) Exit with final stresses g/ 4%,

Algorithms 2(a) and (b). Integration followed by transformation:

(5) Enter with stresses o, the strain increment Agy, and the spin
tensor increment Awj;.
(6) Call the stress-integration scheme with o' and Ag; to find
t+At
Oij .
(7) Call Algorithm (a) or (b) with ;"2 and Awj; to find G5+2¢,

i
(8) Exit with final stresses &',

Algorithms 1(a), (b) and 2(a), (b) provide two simple procedures
to integrate the stress—strain relations in a large-deformation
analysis. Both algorithms preserve the principle of stress objec-
tivity and they require only an auxiliary subroutine to correct the
stresses due to possible rigid-body motion. For some cases the
stress-integration schemes used in small-displacement analysis,
such as that introduced by Sloan et al. [15,16], can then be used
directly in large-deformation analysis.

The basic assumption in Algorithms 1(a), (b) and 2(a), (b) is
that straining and rigid-body motions can be applied sequentially
over the increment, even though the two increments are derived
from the same displacement increment and hence should occur
simultaneously. An obvious improvement would be to apply the
strain increment and the rigid-body rotation increment simulta-
neously during stress integration.

3.2. Algorithms for proportional straining and rotation
Since straining and rigid-body motions are derived from the

same displacement increment, it is also reasonable to assume that
the two quantities can be integrated proportionally over the
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increment. For example, if we subdivide the strain increment into
two subincrements during stress integration, we should also
subdivide the rigid-body rotation increment into two subincre-
ments proportionally.

Sloan [14] developed an explicit scheme for integration of
constitutive equations in the form of (4) for small-displacement
analysis. This scheme was originally designed for conventional
elastoplastic models, which are characterised by linearly elastic
and perfect plastic behaviour. Subsequently, Sloan et al. [15,16]
introduced a number of enhancements to the original scheme. In
their latter work, the scheme was extended to cover generalised
critical state-type models (originally developed for soil), which
exhibit nonlinear elastic behaviour inside the yield surface. This
stress-integration scheme controls the error in computed stresses
by using a local error measure to automatically subincrement the
applied strain increment. The error measure is computed at each
integration point by taking the difference between a first-order
accurate Euler solution and a second-order accurate modified
Euler solution. This method has been used to solve problems
involving a wide range of complicated constitutive models for
soils [15,17]. In this section of the paper, the algorithms developed
by Sloan et al. [15,16] are generalised for large-deformation
elastoplastic analysis and a general stress-integration scheme is
presented for large-deformation problems.

3.2.1. Problem definition

The proportional problem is first formulated using the
Jaumann stress rate. This formulation can be easily extended to
the Truesdell stress rate. Based on the Jaumann stress rate in (5)
and (9), the system of ordinary differential equations to be solved
during a stress-integration procedure in a large-deformation
analysis are expressed in the following form:

Gij = Ciubri+ 0l Dk + 053 17)
Ki=Bi(o,K)A (18)

To integrate Eqgs. (17) and (18) numerically, a pseudo-time T is
introduced by
_t—to

r= At
where tj is the time at the start of the strain increment and to+ At
is the time at the end of the increment. Applying the chain rule of
differentiation to Eqs. (17) and (18) gives

(19)

doji
T,II,] = ijilASk[ + O'l!k Awkj + O';l ACO“
g

=Acf — ALChy 00 + 0% Awyi+ 0'}, Awy (20)
dKi 5
ﬁ —Bi((f, K)A/L (21)
where
AJ (0f /00 ) Chyy At

(o /004))C51(08/3010) — (@f /Km)Bm(a, 1)
B (@f Joa)Adt
 (0f/00)C;4(08/00 k1) — (o /OKm)Bm(0, K)

(22)

Eqgs. (20) and (21) define an initial-value problem to be integrated
over the pseudo-time interval T=0 to T=1.

3.2.2. Intersection with the yield surface
If the initial-stress state is inside the yield surface and the
strain increment causes plastic yielding, the strain increment can

be decomposed into a purely elastic part and an elastoplastic part.
The elastic part of the strain increment produces a stress
increment that moves the stress point, previously inside the yield
surface, to the yield surface. The rigid-body correction should thus
be applied also in two stages. The spin tensor increment in the
first stage is consistent with the elastic strain increment, while the
second correction is commensurate with the elastoplastic strain
increment.

To start the stress integration, it is assumed that the whole
strain increment is elastic. The rigid-body rotation effect, AG;, is
found by considering the total spin tensor increment, using
Algorithm (a). The trial elastic-stress increments Ac;® and AG;
are then used to check if the stress state has changed from elastic
to plasticc Such a change occurs if f(afj, k) <0 but
f(a§j+Ao$j+A&,-j7kf) >0. If such a stress change occurs, it is
necessary to ascertain the fractions of Ag; and Awy;, o, that move
the stresses from o7 to the stress state o}, on the yield surface, as
shown in Fig. 1. Note that ¢f,, includes the correction of stresses
due to rigid-body rotation according to the proportional spin
tensor increment o Aw;;, denoted by A&fj. This correction may be
obtained by Algorithm (a) or (b) with initial values for the stress
and the spin tensor increment being afj and o Awy;, respectively.
Also note that, in Fig. 1, the exact yield condition f{gj;, k;)=0 is
replaced by the approximation |f{cy;, x;) < FTOL| to allow for the
effects of finite-precision arithmetic, where FTOL is a small
positive tolerance and is usually in the range 10~5-10~°, The
problem of finding stresses at the yield surface intersection point
o', is equivalent to finding the scalar quantity o that satisfies the
nonlinear equation

(0 +0Chig Asig+ A&, 15 = F(0])ing 1) =0 (23)

Note that in (23) the secant elastic constitutive matrix C* is used,
which for linear elasticity is identical to the tangential elastic
constitutive matrix. For critical state soil models, the elastic
response is obtained by

AT = Cjy(K. G)Aey = Ciyy(a*, Aey)Aey 24)

where K and G are the secant elastic moduli evaluated using the
initial stress and the total volumetric strain Ag, increment. The
nonlinear equation in (23) can be solved by an iterative procedure
such as Pegasus, which was suggested by Dowell and Jarratt [7].
For more details see Sloan et al. [15].

3.2.3. Elastoplastic unloading

An elastic—plastic transition may occur if a previously yielded
stress point is subjected to an elastoplastic stress increment of the
type shown in Fig. 2. This type of stress path can occur near the tip
of a failure surface if AG7; is large owing to the use of discrete load
increments, and does not require unloading of the overall
structure. Since the portion of the stress path inside the yield
surface is elastic, the elastoplastic constitutive law needs to be

f=+FTOL

S=0 o

G =0 +AT +AG
if ij if ij

f=-FTOL

e ~a
a-Cy, -Ag, +AG;

Fig. 1. Yield surface intersection: transition from elastic to plastic state.
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f=+FTOL -5
/=0 —

f=-FTOL "~ 5 =0, + A5, +AG,

Fig. 2. Yield surface intersection: elastoplastic unloading.

integrated only beyond the last intersection point. The situation
arises when the angle 0 between the yield surface gradient a;'=of]
0o and the tangential elastic stress increment Ao € is larger than
90° and f(a‘;?j, Kt) > +FTOL. The first condition may be written as

t e
a; Aaij

c0sf= ————F——
t e
a1, 1AGEl,

< —LTOL (25)
in which LTOL is a suitable tolerance. The procedure for finding the
yield surface intersection for elastoplastic unloading is similar to
the algorithm used to find the intersection with the yield
surface. To ensure the algorithm finds the correct crossing, it is
sufficient to determine starting values, o and o1, which satisfy

f(au+ocoCuk, Aa,],icf) < — FTOL and f(O't +a1Cuk, Ag;;, ict) > FTOL.

ij>
3.2.4. Modified Euler method for stress integration

In the following, the main algorithm to solve the system of
differential equations defined by (20) and (21) will be presented.
This algorithm is based on the approach first published by Sloan
[14], which attempts to control the errors in stresses and
hardening parameter by using a local error measure to auto-
matically subincrement the imposed strain increment. For each
subincrement, the local error measure is found by taking the
difference between a second-order-accurate modified Euler solu-
tion and a first-order-accurate Euler solution. Once the local error
has been computed for a given step, the size of the next step is
determined using an expression for the dominant error term. This
type of error control permits the size of each subincrement to vary
throughout the integration process, depending on the non-
linearity of the constitutive relations. Consider a pseudo-time
subincrement in the range 0 < AT" < 1 and let the subscripts n and
n+1 denote quantities evaluated at the pseudo-times T' and
T"*'=T"+AT". With the explicit Euler method, the values for g;
and x; at the end of a pseudo-time step AT" are found from

opt! = o+ Aot = K]+ Ax] (26)
where

Ac} = =Gi(a", KMAeLAK] = Ad(c", K", Ae")B;(c™) 27)
and

Ael = AT" Ag;; (28)

A more accurate estimate of the stresses and hardening
parameter at the end of the interval AT" can be found using the
modified Euler procedure. This gives
et =0j+5 f(Aa +AGH)+AG R _K?+%(AK}+AK?)

(29)

where Ac;' and Ax;' are computed from the Euler scheme, AO’,]] *

represents a correction to stress tensor due to (1—a)Awy;, and

ep
Aa = Cl],d

= Al +Ac', K"+ Ax', Ag")B;i(c" + Ac) (30)

(6" +Ac!, K"+ Ak Al Arc?

The relative error measure is computed by

Rr+l _ 1 maX{IAJZ —Adjil IAK? - Ak] }
T2

[Toaadl \\x““u Gh
where the stresses are treated separately from the hardening
parameters to allow for differences of scale. Once this error
measure has been computed, the current strain subincrement is
accepted if R"*! is not greater than some prescribed tolerance,
STOL, and rejected otherwise. Regardless of whether the sub-
increment is accepted or rejected, the next pseudo-time step is
found by scaling the size of the current subincrement:

AT =g AT" 32)
where q is set to [15]
STOL

=0.9 RiT 33)
To avoid dramatic changes in step sizes, q is also limited by
01<g<11 (34)
so that
0.1AT™! < AT" < 1.1AT™! (35)

The end of the integration procedure is reached when the entire
increment of strain is applied so that

S AT=T=1 (36)

The complete explicit modified Euler algorithm with substep-
ping for materials including hardening parameters may be
summarised as follows.

Algorithm 3. Explicit modified Euler algorithm for elastoplastic
models with hardening:

(1) Enter with initial stresses o—,?j, initial hardening parameters !,
the strain increment for the current load step Agy, the spin
tensor increment Acwj; and the error tolerance for the
stresses STOL.

(2) Find A6 ; by Algorithm (a) and compute the stress increment
Aae and the trial elastic stress o according to

AG; _Cuk,Ask,a _0' +AG;+AG

If f(G75, Gijs k!) < FTOL then the stress increment is purely elastic,
so set o‘”m =0y and K L=k and go to step 14.

(3) If floy' +;cl "Y< —FTOL and f(@§,k)>FTOL then the stress
point undergoes a transition from elastic to plastic beha-
viour. Compute the portion of strain increment that
correspond to purely elastic deformation, ¢, and go to step 5.

(4) If floy'+1") <FTOL and f(o G5, k§) > FTOL, check for an elasto-
plastic unloading by computing

agj Ac;
AR

If cosd > —LTOL then
Set =0

else
Compute the portion of Ag; and Awy; that corresponds to
purely elastic deformation «
else
The stress state is illegal as it lies outside the yield surface.
Update the stresses at the onset of plastic yielding as
o‘f ol +o<CU,d(crf O(A?V)A(“kl—l-AO’ Then compute the por-
t10n of Acf; that corresponds to plastic deformation accord-
ing to Aaije<—(1 —a)Ac;® and update the spin tensor by
Awjj—(1—o)Awy.

cosf =

(5

~—
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(6) Set T=0 and AT=1.
(7) While T < 1, perform steps 8-14.
(8) Compute A&I{j and Ax{ for I=1-2 using

N I og
AGj = AT Ac — AN Coy—=-
0G

Akl = A By(&!, &Y

where
AT C&, (of /06
Al = max — N”fl( I/ kl)Nl ——0
(6f/90ij)c§k1(ag/60kz) — (Of JoRm)Bm(G7, k)
Gi=0
67 = oj+Aa)
i/l =Tl

7?2 =Kkl +Ax!
Find A6 ; by Algorithm (a) with initial stress tensor 05 and
spin tensor AT Awj. Then compute the new stresses and
hardening parameters and hold them in temporary storage
according to

ST+AT

1 N
6 =0+ E(AJ%+AJ§)+Aa,j

~T+AT
1

1
R =KiT+§(AK,-] +AxK?).

9

—

Determine the relative error for the current substep from

2 1 2 1
HAO‘U Aain |Ax? — Axc{ | EPS
2“65+AT“ > 2|K,T+AT| ’

RI+AT :max{

where EPS is a machine constant indicating the smallest
relative error that can be calculated.
If RT+AT > STOL the substep has failed. First compute

| STOL
q= max{O.Q W,O.l }

and then set AT <« max{q AT, AT,;,} before returning to step
8.

(11) The substep is successful, so update the stresses and the
hardening parameters by

(10

=

T+AT _ 6_T+AT

ajj i

K;I'JrAT — I%IT+AT,

(12) Extrapolate to obtain the size of the next substep by
computing

. | STOL
q= mln{0.9 W,l.l }

If the previous step failed, limit the step size growth further
by enforcing:

g =min{q, 1.0}
Compute new step size and update pseudo-time according to
AT—qAT, AT<T+AT.

(13) Ensure the next step size is not smaller than the minimum
step size and check that integration does not proceed beyond
T=1 by setting

AT «max{AT, ATin}

and then

AT <~ min{AT,1 —T}.

(14) Exit with stresses o}j and hardening parameters ] at the end
of the increment.

For double precision arithmetic, appropriate values for the
tolerances in steps 4 and 10 are LTOL ~ 10~% and EPS ~ 10716,

In Algorithm 3, rigid-body corrections are introduced in both
elastic and elastoplastic stress increments. One may notice that
the total stress correction due to rigid-body rotation may be
included in the elastic part only. However, the difference between
such a scheme and Algorithm 1 is not of much significance in
practice.

As a summary, three alternative algorithms for considering the
principle of objectivity in a stress-integration scheme were
explained in this section. This principle, which corresponds to
the invariability of the stress state under rigid-body motion, was
satisfied by using the Jaumann stress rate whilst other stress rates
such as that of Truesdell may also be used. The performance of
these algorithms will be studied and compared by means of
numerical examples in the following.

4. Numerical examples

Three alternative algorithms for integrating the constitutive
equations in a rate-type large-deformation analysis were pre-
sented in the previous section. The stress-integration procedures
are explained in Algorithms 1(a), (b) and 2(a), (b) and 3. In
Algorithm 1, the stress correction due to rigid-body rotations is
applied before integrating the constitutive equations. Algorithm 2
integrates the stress—strain relation and then corrects the stresses
for possible rigid-body motion. In Algorithm 3, the effect of rigid-
body rotation is introduced both in elastic and the elastoplastic
stress increments during the integration. These algorithms have
been implemented in the finite-element code SNAC, developed at
the University of Newcastle in Australia over the last two
decades.

4.1. Rigid footing on undrained soil

In the first example, the plane-strain problem of a rough rigid
footing on an undrained soil layer represented by an associated
Tresca model is considered. A large footing displacement
(deformation) is applied in order to study the accuracy and
performance of Algorithms 1(a), (b) and 2(a), (b) and 3. The mesh
for the right-hand half of the footing and material properties are

| E/c, =100
A A7 |v=049
....... p=0°
V) |es
s A7/ g |E=100 kPa
5 didn'4 E
4BE ; g g
wn w0

ra .

Rough
| 6B —|

Fig. 3. Rigid rough footing on cohesive soil.
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shown in Fig. 3. Note that ¢, in Fig. 3 represents the undrained
shear strength of the soil. Young’s modulus has been deliberately
assigned a small value of 100kPa, which would probably be
unrealistic for most soils, in order to include large elastic as well
as large plastic deformations, and therefore to provide a rigorous
test of the algorithms for both elasticity and elastoplasticity. The
mesh used in these analyses consisted of 872 6-noded plane-
strain isoparametric triangular elements, with six integration
points per element. The total imposed displacement was equal to
the footing width, B, and this was applied using 200 time
increments. To study the performance of these algorithms under
identical circumstances, the standard Newton-Raphson method is
used to solve the nonlinear global equilibrium equations in this
example.

The load-displacement curve obtained by the arbitrary
Lagrangian-Eulerian (ALE) method based on the Jaumann stress
rate was presented by Nazem et al. [10] and is shown here in
Fig. 4. A comparison between the performance of the Jaumann
stress rate and the Truesdell stress rate and the small-strain
solution can be found in the same reference. It seems that at a
footing displacement approaching the footing width the
prediction of the ALE method approaches the exact collapse load
for a rigid strip footing loaded at the bottom of a deep trench, i.e.,
(2+27)c, ~ 8.28¢, (see [10] for more details and discussion). The
deformed mesh at the end of analysis is shown in Fig. 5 for both

[=]

oo

—— ALE (Jaumann)
g/~ __|---.828

Average pressure under footing / ¢,

Settlement / B

Fig. 4. Load-displacement response of the rigid rough footing on undrained soil.

symmetric halves of the footing. This undistorted mesh clearly
shows that some elements around the footing experience
relatively large rotations (in the order of 90°).

This same example has been used here to investigate the
performance of the alternative stress-integration algorithms
described in previous sections. The footing problem was analysed
by the ALE method based on the Jaumann stress rate using each
algorithm individually. Load-displacement curves obtained by all
algorithms are more or less the same as the plot shown in Fig. 4.
This means that in terms of accuracy, all algorithms provide
essentially the same solution provided that a small enough time
step is used in the analyses. The size of time step may affect the
accuracy of algorithms and this subject requires further investiga-
tion. To study the efficiency of each algorithm, the stress-
integration time and the total number of iterations necessary to
achieve equilibrium in each analysis are shown in Table 1. In terms
of performance, the difference between Algorithms 1(a), (b)
and 2(a), (b) is not significant. However, Algorithm 3 is 12%
faster than Algorithm 1 and 11.6% faster than Algorithm 2.

The accuracy and performance of these algorithms in an
updated Lagrangian (UL) analysis are also worth comparing,
where the effect of large deformation is also taken into account
but where significant mesh distortion is a possibility. To achieve
this purpose, the problem was solved again using the same
geometry and material properties but different Young’s modulus.
E was assumed to be 1000kPa and a total displacement of 0.4B
was applied to the footing using 200 time increments. Load-
displacement curves obtained by all algorithms are identical but
for brevity they are not shown here. The close agreement of these
solutions is further evidence that accuracies of the algorithms are
similar. However, in terms of efficiency Algorithm 3 outperforms
Algorithms 1(a), (b) and 2(a), (b), as shown in Table 2. Note that

Table 1
Stress-integration time and total iterations of alternative stress-integration
algorithms—ALE method.
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Algorithm Stress-integration time (s) Total iterations
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Fig. 5. Deformed mesh for footing on undrained soil—ALE method.
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Table 2
Stress-integration time and total iterations of alternative stress-integration
algorithms—UL method.

Algorithm Stress-integration time (s) Total iterations
1 27 635
2 31 769
3 22 602
Elastic layer
0.5B | Y Permeable boundary

Elastic top layer:
E=10°kPa

v=03

7= 16 kN/m?
K=k, =10 m/day

MCC soil:

$=25°

A=02

x=0.05

eny=1.8

v=0.3

OCR=2

K,=1.0

7= 16 kN/m?
ky=h, =10 m/day
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Fig. 6. Consolidation of rigid strip footing on MCC soil.

for this problem, Algorithm 3 is 18.5% faster than Algorithm 1 and
29% faster than Algorithm 2.

Finally, it is noted that this example involves significant rigid-
body rotation, particularly of elements of soil below the edge of
the footing, and so it provides a rigorous test of the various stress-
integration algorithms.

4.2. Consolidation analysis of a footing on a modified cam-clay
material

In this example, we study the performance of the suggested
algorithms by solving the consolidation of a rigid strip footing on a
modified Cam-Clay material (MCC), a more complex soil model,
which can simulate strain softening and hardening via one
hardening parameter (the preconsolidation pressure). The for-
mulation and details of the coupled analysis performed here were
previously presented by Nazem et al. [11]. The geometry, finite-
element mesh, and material properties are shown in Fig. 6. The
parameters in Fig. 6 include

¢ the friction angle of the soil skeleton

/ the slope of the normal compression line (NCL) in the space
of the logarithmic mean stress Inp’ versus the void ratio e

e x the slope of the unloading-reloading line (URL) in the Inp’-e
space

ey the intercept of the NCL on the e-axis when Inp’=0

v the Poisson’s ratio of the soil skeleton

OCR the over-consolidation ratio of the soil

K, the coefficient of earth pressure at rest

y the unit weight of the soil, and

ke kyy coefficients of permeability in x and y directions,
respectively.

Time (days)
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)
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Fig. 7. Settlement versus time for the footing on MCC soil.

Because the MCC soil does not have any shear strength at zero
mean stress, a thin layer of elastic material is added on top of the
MCC soil to prevent a slope instability problem when the
settlement of the footing becomes very large.

The analysis includes three stages. In the first stage, a non-zero
initial stress field is generated by applying body force due to the
self-weight of the soil. Then, the initial yield surface locations are
determined according to the current stresses and the OCR. In the
second stage, a uniform vertical pressure is applied to the footing
at a constant rate over a period of 100 days until reaching a
magnitude g=40kPa. Finally, the load g is then kept constant and
the soil is allowed to consolidate over time.

Fig. 7 shows a plot of the settlement of the footing versus time
obtained by the UL method. The final consolidation settlement of
the footing is 0.41 m. All algorithms produced virtually identical
results in this case. Note that neither severe mesh distortion nor
entanglement of elements was observed in this example. This is
shown graphically by plotting the deformed mesh at the end of
the analysis in Fig. 8. Stress-integration time and total number of
iterations are shown in Table 3 for each algorithm. According to
the table, Algorithm 3 is 14% and 21% faster than Algorithms 1(a),
(b) and 2(a), (b), respectively. It is also evident that Algorithm 3
requires fewer iterations to achieve equilibrium compared with
Algorithms 1(a), (b) and 2(a), (b).

5. Conclusions

Three stress-integration algorithms for a rate-type large-
deformation analysis were presented in this paper. In
Algorithm 1, the stresses are corrected for rigid-body motion
before integrating the stress—strain relations. Algorithm 2 inte-
grates the constitutive equations and then corrects the stresses for
possible rigid-body rotations. In Algorithm 3, the correction due to
rigid-body rotation is introduced both in elastic and the
elastoplastic stress increments during the stress integration. The
following conclusions are drawn from the numerical examples
considered in this paper:

(1) All three algorithms are capable of providing more or less
identical results (provided load steps are sufficiently small),
i.e, in terms of accuracy, there is no real advantage in
choosing one algorithm over the others. This implies the stress
correction due to rigid-body rotation may be calculated
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Fig. 8. Deformed mesh of the footing on MCC soil at the end of analysis.

Table 3
Stress-integration time and total iterations of alternative stress-integration
algorithms—UL method.

Algorithm Stress-integration time (s) Total iterations
1 242 781
2 262 801
3 208 709
before, after, or during integration of the consti-

tutive equations as long as an objective stress rate is
employed.

(2) Any stress-integration algorithm developed for a small-
deformation analysis can therefore be directly used in a
large-deformation analysis without modification, provided
that the stresses are corrected for rigid-body rotation by an
auxiliary subroutine either before or after integrating the
constitutive equations. This conclusion is very helpful in
developing software for large-deformation analysis.

(3) Comparing the time spent for stress integration and the total
number of iterations necessary to achieve equilibrium in
each algorithm has revealed that it is slightly more efficient to
apply rigid-body corrections while integrating the constitu-
tive equations. This may be due to the fact that increments of
strain and rigid-body motion are derived from the same
displacement increments. Consequently, it is more reasonable
to integrate the two increments simultaneously. This state-
ment has been shown to be true for the examples presented
here by the fact that Algorithm 3 is faster than Algorithms
1(a), (b) and 2(a), (b), requiring fewer iterations to achieve
equilibrium during a load increment.

Finally, it is emphasised that these conclusions are based on
a study of only two example problems, but both involved
very severe straining of the elastoplastic medium and large

displacements and rotations. On this basis it is speculated that
these conclusions should apply much more broadly.

Acknowledgements

The research described in this paper was supported by
Discovery Project grants funded by the Australian Research
Council. This support is gratefully acknowledged.

References

[2] K]. Bathe, E. Ramm, E.L. Wilson, Finite element formulations for large
deformation dynamic analysis, International Journal for Numerical Methods
in Engineering 9 (1975) 353-386.

[3] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and
Structures, John Wiley, Chichester-New York, 2000.

[4] ].P. Carter, J.R. Booker, E.H. Davis, Finite deformation of an elasto-plastic soil,
International Journal for Numerical and Analytical Methods in Geomechanics
1 (1977) 25-43.

[5] J.P. Carter, J.C. Small, J.R. Booker, A theory of finite elastic consolidation,
International Journal of Solids and Structures 13 (1977) 467-478.

[6] M.A. Crisfield, Nonlinear Finite Element Analysis of Solids and Structures, vol.
1, John Wiley and Sons, Chichester, England, 1991.

[7] M. Dowell, P. Jarratt, The Pegasus method for computing the root of an
equation, BIT Numerical Mathematics 12 (1972) 503-508.

[8] M.S. Gadala, J. Wang, Computational implementation of stress integration in
FE analysis of elasto-plastic large deformation problems, Finite Elements in
Analysis and Design 35 (2000) 379-396.

[9] TJ.R. Hughes, J. Winget, Finite rotation effects in numerical integration of rate
constitutive equations arising in large-deformation analysis, International
Journal for Numerical Methods in Engineering 15 (1980) 1862-1867.

[10] M. Nazem, D. Sheng, J.P. Carter, Stress integration and mesh refinement in
numerical solutions to large deformations in geomechanics, International
Journal for Numerical Methods in Engineering 65 (2006) 1002-1027.

[11] M. Nazem, D. Sheng, J.P. Carter, S.W. Sloan, Arbitrary Lagrangian-Eulerian
method for large deformation consolidation problems in geomechanics,
International Journal for Analytical and Numerical Methods in Geomechanics
32 (2008) 1023-1050.

[12] P.M. Pinsky, M. Ortiza, K.L. Pister, Numerical integration of rate constitutive
equations in finite deformation analysis, Computer Methods in Applied
Mechanics and Engineering 40 (1983) 137-158.

[13] A. Rodriguez-Ferran, A. Huerta, Comparing two algorithms to add large strains to
small-strain FE code, Journal of Engineering Mechanics 124 (1998) 939-948.



M. Nazem et al. / Finite Elements in Analysis and Design 45 (2009) 934-943 943

[14] S.W. Sloan, Substepping schemes for the numerical integration of elastoplas-
tic stress—strain relations, International Journal for Numerical Methods in
Engineering 24 (1987) 893-911.

[15] S.W. Sloan, AJ. Abbo, D. Sheng, Refined explicit integration of elastoplastic models
with automatic error control, Engineering Computations 18 (2001)
121-154.

[16] S.W. Sloan, AJ. Abbo, D. Sheng, Erratum, Engineering Computations 19 (2002)
594.

[17] J. Zhao, D. Sheng, M. Rouainia, S.\W. Sloan, Explicit stress integration of
complex soil models, International Journal for Analytical and Numerical
Methods in Geomechannics 29 (2005) 1209-1229.



