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Abstract

This paper describes a general strategy for generating lower bound meshes in D-dimensions. The procedure is based on a parametric

mapping technique, coupled with midpoint splitting of subdomains, and permits the user to control the distribution of the discontinuities and

elements precisely. Although it is not fully automatic, the algorithm is fast and automatically generates extension zones for problems with

semi-infinite domains.
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1. Introduction

Lower bound finite element methods, such as those

described by Lyamin [1] and Lyamin and Sloan [2], have

become increasingly popular for predicting continuum

collapse loads. Unlike conventional finite element meshes,

a lower bound grid must be able to incorporate stress

discontinuities along faces that are shared by adjacent

elements. Since these stress discontinuities are of zero

thickness, several nodes may share the same coordinates

and additional complexity is introduced into the mesh

generation process. In general, the role of the disconti-

nuities is crucial as their arrangement and distribution has

a dramatic influence on the accuracy of the lower bound

solution [3]. To ensure that the discontinuities are

correctly positioned requires precise control in the mesh

generation phase. The need for this control is further

reinforced by the fact that only linear finite elements

(where the stresses vary linearly over the element) can be

used in the lower bound analysis. Higher order elements,

which are often effective in conventional finite element

analysis, are not an option in the lower bound method

since they lead to stress fields which may not be statically

admissible.

To illustrate the importance of incorporating stress

discontinuities in a lower bound analysis, consider

the behaviour of a rigid strip footing resting on a purely

cohesive weightless soil. The exact collapse pressure for

this case is p ¼ ð2 þ pÞcu; where cu is the undrained shear

strength of the soil. Fig. 1(a) shows that this solution is

matched to within about 2% for a ‘fan’ mesh with

discontinuities at all element edges. Removing these

discontinuities leads to a lower bound which is some 40%

below the exact collapse pressure (Fig. 1(d)). Meshes with

other distributions of discontinuities, as depicted in Fig. 1(b)

and (c), furnish solutions which lie between these two

extremes.

2. Lower bound mesh generation by parametric

mapping

Because of its ability to control the position and

distribution of the elements and discontinuities precisely,

a parametric mapping algorithm is well suited for generat-

ing lower bound meshes. The method described here

requires the domain to be initially partitioned into a set of

mappable subdomains, each with its own specified subdivi-

sion information, that will yield the type of mesh desired.

Although automatic subdivision techniques based on feature

recognition have recently emerged [5,6], these are not well

suited to the present application as they only control the

shape of the generated elements and not the distribution of

the discontinuities. In the new generator described here, the

division of the object into compatible subdomains is done
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manually and then verified and adjusted (if necessary)

automatically. This approach has proved to be sufficiently

general for a wide variety of geotechnical problems, and is a

powerful auxiliary tool for the solution of complex 3D

lower bound problems.

Although the need to subdivide the body into mappable

subdomains is a disadvantage when the geometry is very

complex, it is a natural approach for inhomogeneous

geotechnical problems involving layered soils. Additional

advantages of adopting this strategy for the lower bound

formulation are:

† It is simple to generate a regular pattern of discontinuities

throughout the body.

† The same program can be used to generate meshes of

different dimensionality.

† The geometry, material properties, loading and boundary

conditions can be modelled using the same mapping

technique.

† Extension elements can be generated automatically for

problems with semi-infinite domains.

† The input data has a readable, regular structure which is

convenient to use.

† Apart from the manual subdivision stage, the mesh

generation is very fast.

The two major phases in the new mesh generation

scheme are:

Fig. 1. Influence of mesh discontinuities on accuracy of lower bounds for strip footing on purely cohesive soil (‘fan’ mesh).
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1. Subdividing the domain into subdomains which are

simple to mesh directly.

2. Meshing each subdomain with discontinuities and

elements according to a specified density and distribution.

Each of these aspects are now considered in turn.

3. Decomposition into subdomains

As shown in Fig. 2, the domain subdivision for most

practical problems is governed by the key features of the

geometry, material properties and applied loading. This

implies that the resulting subdomains have to be

mappable in terms of these quantities. Although a

number of different mapping techniques are possible,

the simplest and most suitable for lower bound grid

generation is the isoparametric mapping. This technique,

first described by Zienkiewicz and Philips [9], uses

Lagrange polynomials to model each subdomain bound-

ary and provides a natural means of generating the nodal

coordinates and element topology arrays automatically.

Assuming that all the subdomains are quadrilateral

(or hexahedral in the 3D case), the relevant isoparametric

mappings for the geometry and the material variation

may be written as:

2D

Xðj;hÞ ¼
XmX

i¼1

Niðj;hÞXi ð1Þ

Mðj;hÞ ¼
XmM

i¼1

Niðj;hÞMi

3D

Xðj;h; zÞ ¼
XmX

i¼1

Niðj;h; zÞXi ð2Þ

Mðj;h; zÞ ¼
XmM

i¼1

Niðj;h; zÞMi

where X and M are the global coordinates and material

properties of a point in space, respectively, ðj;h; zÞ are

the local coordinates of the reference subdomain (whose

values range from 21 to þ1), mX and mM are the

number of subdomain nodes for the geometry and

material representation, respectively, Ni is the assumed

shape functions associated with subdomain node i; and

Xi and Mi are the coordinates and material properties of

the subdomain nodes, respectively. In the mesh gen-

erator, both linear and quadratic ‘serendipity’ shape

functions are used to describe the variation of the

geometry and material properties over each subdomain.

Even though the variation of these quantities is always

linear throughout each generated element, the use of

quadratic shape functions is convenient for modelling

curved boundaries or complex material variations with a

minimum number of subdomains. For cases with non-

linear geometries or complicated material variations, the

accuracy of the linearisation can be controlled simply by

adopting an appropriate element density. Full descriptions

of the subdomains used in two and three dimensions,

and their parametric mappings, are presented in Figs. 3

and 4.

It is also convenient to specify the applied surface

tractions and body forces using an isoparametric mapping

approach. To this end the domain should be subdivided so

that the distribution of the forces can be modelled using the

following parametric representation

2D

tðj0Þ ¼
Xmt

i¼1

Niðj
0Þti; qðj0Þ ¼

Xmq

i¼1

Niðj
0Þqi ð3Þ

gðj;hÞ ¼
Xmg

i¼1

Niðj;hÞgi; hðj;hÞ ¼
Xmh

i¼1

Niðj;hÞhi

3D

tðj0;h0Þ ¼
Xmt

i¼1

Niðj
0
;h0Þti; qðj0;h0Þ ¼

Xmq

i¼1

Niðj
0
;h0Þqi ð4Þ

Fig. 2. Domain subdivision considering complexity of (a) geometry, (b)

geometry and material properties, and (c) geometry, material properties and

applied loading.

A.V. Lyamin, S.W. Sloan / Advances in Engineering Software 34 (2003) 321–338 323



gðj;h; zÞ ¼
Xmg

i¼1

Niðj;h; zÞgi; hðj;h; zÞ ¼
Xmh

i¼1

Niðj;h; zÞhi

where t are prescribed surface tractions, g are prescribed

body forces, q are unknown surface tractions which are to

be optimised, h are unknown body forces which are to be

optimised, mt; mg; mq and mh are the numbers of subdomain

nodes for t, g, q and h, respectively, ti; gi; qi and hi are nodal

values of t, g, q and h, respectively, and ðj0;h0Þ are local

coordinates along the side of each subdomain. The use of

parametric mapping to describe the geometry, material

variation and applied loads over a typical subdomain is

shown in Fig. 5.

This type of mapping is not only very general, but also

has the additional benefit of employing a consistent

structure for the input data. One of its important special

features is that it permits the generation of a ‘fan’ of

discontinuities that can be centered on a singularity in the

stress distribution. These singularities, one of which is

shown in Fig. 6, commonly occur where there is an abrupt

change in the boundary conditions. The advantage of these

stress fans is that each discontinuity allows a jump in the

tangential stress, thus providing the potential for a rapid

change in the stress field and a higher lower bound.

The magnitude of this benefit is shown in Fig. 6, where

the number of discontinuities passing through the edge of

the rigid footing has a marked influence on the accuracy

of the lower bound solution. Note that although the shape of

the elements can be quite distorted in regions with a high

density of discontinuities, this has little effect on the

stability of the lower bound technique as the method does

not involve integration over the element volumes.

Since the shape of the generated elements is not a key

consideration in our analysis, the domain can be sub-

divided using only quadrilateral (or hexahedral) subdo-

mains which, if necessary, can have their edges collapsed

to furnish the desired discontinuity pattern. These ‘degen-

erate’ subdomains still have the same number of nodes as

normal subdomains, the only difference is that all of the

nodes along a collapsed edge have the same physical

coordinates. All the shapes that can be approximated using

this technique are shown in Fig. 7. It is worth mentioning

here that, like the usual parametric transformation, no

internal angle in the collapsed subdomains can be greater

than 1808.

The input data required for the mapped subdomain

method has a consistent structure which is simple to use and

modify. It may be summarised as follows:

Fig. 3. Two-dimensional linear and quadratic ‘serendipity’ subdomains.
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Control information

1. Global mesh description parameters.

2. Numbered set of material properties.

3. Numbered set of extension directions to generate

extension elements.

4. Numbered set of prescribed surface tractions.

5. Numbered set of optimisable surface tractions.

6. Numbered set of prescribed body forces.

7. Numbered set of optimisable body forces.

For each subdomain

1. Local mesh description parameters.

2. Number of subdivisions along each local coordinate.

3. Grading coefficients to control the subdivision spacing

along each local coordinate.

4. Material property number, prescribed body force num-

ber, and optimisable body force number.

5. Coordinates of all subdomain nodes.

6. Numbers of sides with prescribed surface tractions and

the numbers of these tractions.

7. Numbers of sides with optimisable surface tractions and

the numbers of these tractions.

8. Numbers of sides shared between subdomains and the

continuity conditions on these sides (the latter controls

the generation of discontinuities between subdomains).

9. Numbers of sides with extension conditions and the

numbers of these conditions.

To automate the matching of subdivisions along each

boundary between adjacent subdomains, which is known as

compatibility control, it is convenient to subdivide the

object using the so-called ‘chequer board’ technique.

Fig. 4. Three-dimensional linear and quadratic ‘serendipity’ subdomains.
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This method views the subdomains as a topologically

equivalent rectangular block diagram, forming a chequer

board pattern [8] and, if necessary, introduces void zones to

account for regions where the mesh is not generated. The

chequer board pattern scheme suggested by Zienkiewicz

and Phillips [9] consists of four major steps, namely:

1. Divide the given domain into quadrilateral (hexahedral)

subdomains.

2. Transform the subdomains into a topologically equival-

ent chequer board pattern.

3. Generate the mesh in terms of local coordinates in the

transformed plane.

Fig. 5. Parametric mapping of geometry, material properties and applied loads for quadrilateral subdomain.

Fig. 6. Influence of discontinuity fan on accuracy of lower bounds for strip footing on purely cohesive soil.
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4. Transform the local nodal coordinates to global nodal

coordinates.

A simple 2D example which illustrates each of these

steps is shown in Fig. 8. The results shown in Figs. 1 and 6

highlight the need to have precise control over the location

of the stress discontinuities in the mesh generation phase.

Indeed, this ability is essential for large scale problems

where the exact solution is unknown, as it provides the

potential to investigate the sensitivity of the solution to

the number and pattern of discontinuities in the mesh. In the

lower bound mesh generator, the continuity conditions

between each subdomain is controlled by the user, as is the

distribution of the discontinuities between each of

the generated elements. Using the input information,

the program automatically glues the subdomains together

and performs compatibility checks along their common

boundaries changing, if necessary, the coordinates of

midside nodes, the subdivision numbers and the subdivision

grading coefficients. As a result of this procedure, a D-

dimensional connectivity array is formed and used to verify

the subdomain compatibility data. Once this task is

completed, the mesh is generated parametrically for each

subdomain in an independent fashion. The key steps

involved in forming the elements are described in Section 4.

Before discussing how each subdomain is split into finite

elements, it is useful to mention the node numbering system

that is used in the mesh generation scheme. For the

hexahedral subdomain node numbering shown in Fig. 4,

the local coordinates for a particular node can be computed

Fig. 7. Planar and volumetric mappable subdomains with collapsed edges.
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once we know its number. For example, the local

coordinates for the ith corner node of a hexahedron are

given by the sequence

i ¼ 1; 2;…; 23 j ¼
i 2 1

22
z ¼ 2j 2 1

k ¼ 1 2 22j j ¼
k 2 1

21
h ¼ 2j 2 1

l ¼ k 2 21j j ¼
l 2 1

20
j ¼ 2j 2 1

ð5Þ

where all operations in the first two columns are integer and

all operations in the last column are real. A similar

procedure can also be derived for the midside nodes.

Using this type of approach, it is possible to implement the

scheme in a form which is dimensionally independent and

therefore general.

4. Meshing of subdomains

After the domain is defined by a set of quadrilateral

(hexahedral) subdomains, the mesh is generated by auto-

matically subdividing each subdomain into a specified

number of quadrilateral (hexahedral) blocks which are then

split into a set of linear triangular (tetrahedral) elements.

These steps are all executed in the transformed curvilinear

space, where the subdivision and splitting is performed on

square (cubic) blocks. Once the triangles (tetrahedra) have

been generated in this space, the resulting local coordinates

are transformed to global coordinates in physical space using

the transformation (2). The complete sequence of steps for a

single subdomain with collapsed edges is shown in Fig. 9.

As shown in Fig. 10, a square (cubic) subdomain can

be subdivided into smaller rectangular (hexahedral)

blocks in parametric space using either equal or graded

subdivisions along each parametric coordinate. The latter

are employed if mesh refinement is needed to improve

the accuracy of the lower bound analysis. Two different

strategies can be used, either separately or in tandem, to

produce the desired element proportions in the generated

mesh. The first method, which is restricted to quadratic

subdomain elements, adjusts the position of the midside

nodes from their central location to give a nonuniform

distribution of element density. Note that the position of

these nodes cannot be chosen arbitrarily, since the one-

to-one parametric mapping between the local coordinates

and the global coordinates must be preserved. According

to Steinmueller [7], all midside nodes must be located in

the middle half of the edge to avoid non-uniqueness in

the parametric mapping process. Zienkiewicz and Taylor

[10] are more conservative and recommend that the

‘middle third’ rule shown in Fig. 10(b) is safer.

The second, and more flexible, form of mesh grading

employs suitable weighting factors to generate unequal

subdivisions, as shown in Fig. 10(c). To describe this

technique, consider the division of a one-dimensional

curved segment AB of length S into n intervals using a

geometric progression. Depending on whether the weight-

ing factor w is less than, equal to, or greater than 1, the

generated intervals from point A to point B will be,

respectively, progressively shorter, equal, or progressively

longer. By induction, the sum S of the first n terms of the

geometric progression can be written as

S ¼ Sn ¼
Xn

i¼1

ai ¼
Xn

i¼1

a1wi21 ¼ a1ð1 þ w þ · · · þ wn21Þ

¼ a1

1 2 wn

1 2 w
ð6Þ

where w ¼ aiþ1=ai – 1 and a1 is the first term. Since w

and S are known for a given edge, Eq. (6) gives

Fig. 8. The four steps in the ‘chequerboard’ pattern mesh generation scheme.
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a1 ¼ Sð1 2 wÞ=ð1 2 wnÞ and the ith term ai can be found by

definition as ai ¼ a1wi21: If XA and XB denote the

parametric coordinates of the endpoints A and B,

respectively, and n denotes the number of subdivisions

along the line, then the coordinate of a point i is

Xi ¼ ðXB 2 XAÞ
1 2 wi21

1 2 wn
þ XA ð7Þ

Fig. 10. Equal and graded subdivision of quadrilateral subdomain.

Fig. 9. Filling a volumetric subdomain with tetrahedra.
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where i is the number of nodes counting from point

A. Provided w – 1; Eq. (7) is employed to evaluate the

coordinates of all intermediate nodes when each mapped

subdomain is subdivided in parametric space. For

convenience, the same weighting factor is used for the

two opposite sides of each subdomain and the local

coordinates of the endpoints are taken as XA ¼ 21 and

XB ¼ þ1:

In some applications it is more convenient to define

the weighting factor w as the ratio between the lengths

of the first and last segments over the interval. For this

type of weighting scheme, the expression (7) is

replaced by

Xi ¼ ðXB 2 XAÞ
1 2 wði21Þ=n

1 2 w
þ XA ð8Þ

After each mapped subdomain has been subdivided into

the required number of quadrilaterals (hexahedra), the

next step in the mesh generation procedure is to split

these blocks into triangles (tetrahedra). One method for

implementing this phase is to split the blocks along

their shortest diagonals, as shown in Fig. 11(a) and (c).

Although it is convenient and simple, shortest diagonal

splitting has a number of significant drawbacks for

generating lower bound meshes. Firstly, as shown in

Fig. 11(b), there is no symmetry in the generated mesh

pattern so that it is not possible to control the precise

pattern of the stress discontinuities between the

elements. This lack of symmetry in the 3D case also

causes mesh compatibility problems between adjacent

subdomains, even when the parent mesh is fully

compatible (Fig. 11(d)). Secondly, the method needs

different logic for splitting triangles and tetrahedra, thus

restricting the development of dimensionally indepen-

dent software.

In view of the above characteristics, the shortest diagonal

strategy is generally not well suited for forming lower

bound meshes. An alternative splitting scheme, known as

the midpoint method, was adopted in the present generator

as it creates symmetric meshes, does not need additional

compatibility control between adjacent subdomains, and

can be generalised to decompose a D-dimensional mapped

shape into simplex elements.

Fig. 11. Disadvantages of shortest diagonal splitting strategy.
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The midpoint scheme for subdividing planar and

volumetric subdomains is shown, respectively, in Fig. 12(a)

and (c). The uniform and predictable pattern of the generated

discontinuities and elements, shown in Fig. 12(b), suit

the lower bound technique ideally. Moreover, in 3D

applications, any compatibility problems between adjacent

subdomains are avoided (Fig. 12(d)). If a more refined mesh

is required the optional splitting is invoked.

Fig. 12. Midpoint decomposition strategy for planar and volumetric subdomains with optional ‘fine’ splitting.

Fig. 13. Examples of problems with loading in local coordinates.
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5. Local coordinate systems

It is very common to specify the loading for a lower bound

analysis in terms of an auxiliary coordinate system which is

different from the usual global Cartesian coordinate system.

This is convenient, for example, when normal and shear

tractions are applied to surfaces, or when centrifugal body

forces are imposed over a volume (Fig. 13). Such a system is

generally specific for each point and is, therefore, usually

known as a local coordinate system. Let us assume that the

local coordinate system x0
k; k ¼ 1; 2;…;D can be obtained by

rotating the global Cartesian system xi; i ¼ 1; 2;…;D about

the origin. Under this assumption, the only information we

need to perform transformations from one system to the other

is the matrix of direction cosines bki which orient the x0
k-axis

with respect to the xi-axis. Indeed, the coordinates and stresses

in the two systems are related by the linear transformation

x0k ¼ bkixi ð9Þ

skm ¼ sijbkibjm ð10Þ

Depending on the particular situation, the local coordinate

system can be constructed according to one of the following

options:

1. Using topological information for a single finite element.

2. Using topological information for a subdomain.

3. Using some prescribed rule (e.g. a table or a formula).

The sequence of calculations involved in these variants is

shown in Fig. 14. Each option has its own advantages and

Fig. 14. Local coordinate systems using (a) topology of a single element, (b) topology of subdomain and (c) prescribed formula.
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limitations, some of which we will now briefly discuss.

Since our numerical formulation is restricted to linear finite

elements with linear geometry, the need for a local

coordinate system arises only when stress transformations

like Eq. (10) are necessary.

Using option 1, we can generate a coordinate system

which has one axis normal to the element face and the

other axes tangential to it. This arrangement, shown in

Fig. 14(a), does not provide much control over the

orientation of the tangential components because of the

lack of information that can be extracted from the element

topology data (apart, for example, from directing one of

the tangential axes along one of the edges). A further

limitation of this scheme is that the orientation of the

local axes is constant over the element surface. These

characteristics are a major disadvantage of option 1 when

a local coordinate system is required to apply surface

tractions along a boundary. Apart from the fact that the

scheme cannot specify the tangential tractions properly, it

restricts the orientation of the normal traction to being

piecewise constant. This limitation can result in weak

lower bounds for problems where the loading is applied

over curved boundaries. For some tasks, however, such as

generating discontinuity constraints, option 1 is suffi-

ciently flexible and provides a simple coordinate system

with a minimum of data.

When applied to a parametrically mappable subdomain

geometry, option 2 can be used to establish a local

coordinate system whose axes are related to the directions

of the curvilinear coordinate system at the point of interest.

This type of arrangement is useful for applying surface

tractions which are normal or tangential to a parametrically

approximated boundary. Since the orientation of the

coordinate system changes from point to point on

the surface, it permits a piecewise linear representation of

the tractions over a curved boundary (Fig. 15(b)). This

feature means that the tractions can be modelled with good

accuracy, even though the geometry of the elements is

restricted to being linear. Moreover, since the tangential

directions to the surface can be properly oriented with

respect to the curvilinear coordinates on the boundary,

tangential tractions can be modelled correctly. This type of

local coordinate system is also applicable when centrifugal

body forces are imposed on a body about an axis of

symmetry.

Although it is both effective and general, option 2 is

numerically complicated and needs more input information

than the other options.

The third and last option is useful when the shape of the

domain, or the profile of the applied tractions, can be given

in analytical form. In modelling the rotation of the object,

for example, the direction of the centrifugal forces at a point

can be obtained using the analytical relations between

rectangular and polar coordinates, as shown in Fig. 14(c).

In order to exploit the relative advantages of each of the

above options, the following approach is used in the lower

bound implementation:

† Use option 1 for interelement discontinuity constraints,

where the tangential components of the stress tensor

can be oriented in arbitrary, mutually orthogonal

directions.

† Use option 2 whenever locally oriented surface

tractions, especially tangential surface tractions, need

to be applied.

† Use option 3 if the orientation of the applied forces is

independent of the geometry of the body (e.g.

centrifugal body forces).

This strategy for selecting the local coordinate system

has proved to be both effective and accurate for modelling a

wide range of practical problems with complex loading.

6. Generation of extension elements

When the lower bound finite element method is applied

to problems with semi-infinite domains, only part of the

body is discretised. This means that the optimised stress

field does not necessarily satisfy equilibrium, the stress

boundary conditions and the yield criterion throughout the

entire domain and, therefore, cannot be used to infer a

rigorous lower bound on the collapse load. Although this

type of solution, which is known as a partial stress field, may

actually furnish a good estimate of the true collapse load, a

fully rigorous lower bound can be obtained only by

Fig. 15. Approximation of applied surface tractions on curved boundary.
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extending the stress field over the semi-infinite domain in

such a way that all the conditions of the lower bound

theorem are fulfilled. This process is often difficult,

especially for cases involving irregular boundary shapes,

and is frequently omitted in analytical calculations.

To resolve this situation two different approaches may be

adopted. In the first approach, a guess is made of the extent

of the plastic zone and an initial mesh is chosen to cover this

volume. Once the collapse load has been computed,

the initial grid is refined by adding an additional layer of

elements around its periphery, as shown in Fig. 16, and a

new collapse load is found. This process is repeated until the

collapse load ceases to change as the mesh penetrates more

deeply into the semi-infinite body. Although it does not

guarantee that the result obtained is a rigorous lower bound,

this ‘engineering’ approach does give good results in

practice. Moreover, it can be used for any type of yield

criterion and, provided an automatic mesh generator is

available, is not too difficult to apply.

The second approach, which is more complicated than

the first, is to develop special extension elements which are

deployed around the periphery of the mesh (Fig. 17). These

are constructed so they extend the stress field beyond the

limits of the grid in such a way that it is statically

admissible. To handle an arbitrary geometry in two

dimensions, Pastor [4] showed that a maximum of two

different types of extension elements are necessary. Here it

will be shown that for D-dimensional geometries, a

maximum of D different types of extension elements are

required. Although they are restricted to certain types of

yield criteria, extension elements are attractive because they

guarantee that the solution obtained is a rigorous lower

bound. Moreover, they remove the need for the trial-and-

error process of mesh enlargement described in the previous

paragraph.

A D-dimensional extension element is much like a

regular lower bound finite element in that the stress field is

defined by the stresses at D þ 1 nodes and the body forces

are assumed to be constant. Indeed, as with any lower bound

element, the stresses must satisfy the equilibrium, stress

boundary and yield conditions. Consider the 2D case shown

in Fig. 18, where a linear expansion is used to model

the stresses across and outside a three-noded extension

element. Provided the equilibrium and stress boundary

conditions are satisfied within the triangle, then they are

automatically satisfied for any point p outside the triangle.

This implies that all extension elements are subject to the

same equilibrium and stress boundary constraints as regular

elements. For the yield condition, however, it is quite clear

that additional constraints are necessary, since imposing the

condition that f ðslÞ # 0 for the nodes l ¼ 1; 2; 3 does not

guarantee that f ðspÞ # 0 for any point p outside the

element. Deriving appropriate yield constraints for an

extension element is the most complicated part of the

extension procedure, as special care needs to be taken to

ensure the stress field is properly constrained. For the sake

of simplicity, our attention will now be limited to those yield

surfaces which have no meridional curvature in principal

stress space (such as the Tresca, Von Mises, Drucker-Prager

and Mohr-Coulomb criteria), as these permit the formu-

lation of elegant and compact extension conditions. It is

possible to derive extension conditions for more complex

yield criteria with curved meridional sections, but these will

not be covered here.

To derive the yield conditions for a two-dimensional

extension element, consider sij stress space with the yield

surface f ðsÞ # 0 and three nodal stress points s1;s2;s3

with coordinates X1;X2;X3: Physical reasoning suggests

that, once a linear variation of the stresses is assumed

between the nodes, then there are only two possible cases to

consider when extending the stress field beyond the

boundaries of the element. These cases involve either uni-

or bi-directional extension and are shown, respectively, in

Fig. 17. Extending the stress field using special extension elements.

Fig. 16. Extending the stress field by extending the mesh.
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Fig. 19(a) and (b). In the first case, extension is possible

along the direction X1 2 X2 if we apply the yield condition

f ðs1 2 s2Þ # 0 ð11Þ

to the stresses at node 1. To aid in the description of the

extension process, all nodes with this type of modified yield

condition are called extension nodes. For a cone-like yield

surface, the extension node, node 1, is always positioned

further from the apex of the cone f ðsÞ # 0 than its partner,

node 2, and is inside the cone given by the surface f ðs2

s2Þ # 0: To signify their different roles in the extension

process, node 2 is said to be an active node and node 3 is

said to be a passive node. Both of these nodes are subject to

the same type of yield constraint, so that f ðs2Þ # 0 and

f ðs3Þ # 0; but node 2 is also involved in the constraint (11)

which is enforced at node 1. The fourth type of node shown

in Fig. 19(a), node 4, is known as a dummy node. The

stresses at this node, s4; are not independent, since they can

be expressed as a linear combination of the stresses at nodes

1 – 3. The sole purpose for including node 4 is to

accommodate a semi-infinite stress discontinuity along the

edge defined by nodes 3 and 4. Indeed, this dummy node is

subject to no constraints apart from those that are imposed

by discontinuity equilibrium. With reference to Fig. 19(a),

the uni-directional extension conditions are summarised by

the constraints f ðs1 2 s2Þ # 0; f ðs2Þ # 0 and f ðs3Þ # 0;

together with the usual equilibrium and stress boundary

constraints that apply to the element defined by nodes

ð1; 2; 3Þ: These conditions guarantee that any stress point in

the semi-infinite area bounded by the vectors

aðX1
2 X2Þ

X2 2 X3

aðX4 2 X3Þ

a [ ð0;1Þ ð12Þ

will automatically meet the requirements of a statically

admissible stress field. The zone of the statically admissible

stress field extension is thus the shaded area.

To construct a bi-directional extension element, as

shown in Fig. 19(b), we apply the constraint (11) at node

1 and the constraint

f ðs3 2 s2Þ # 0 ð13Þ

at node 3. Hence the bi-directional extension conditions are

f ðs1 2 s2Þ # 0; f ðs2Þ # 0 and f ðs3 2 s2Þ # 0; coupled

with the standard equilibrium and stress boundary con-

straints that apply to the element defined by nodes ð1; 2; 3Þ:

This gives a semi-infinite statically admissible extension

zone which is bounded by the vectors

aðX1
2 X2Þ

aðX3 2 X2Þ
a [ ð0;1Þ ð14Þ

The logic described above for 2D geometries can be

generalised to D-dimensions. In this case there are D

Fig. 18. Approximation of stress field inside and outside the extension element.

Fig. 19. Extension elements for 2D (a) uni-directional (type 1) and (b) bi-

directional (type 2).
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different types of extension elements, each of which is

distinguished by its number of extension nodes.

Each extension node, together with its corresponding active

node, determines the direction of the extension. In the case

of M multiple extension directions, statically admissible

extension of the stress field is possible throughout the

semi-infinite M-dimensional volume they define. In D-

dimensions, it is convenient to label an extension element as

being of type j if it has j extension nodes. For such an

element, there are D 2 j passive nodes, one active node and

2D 2 ðj þ 1ÞðD 2 j þ 1Þ dummy nodes. In the latter, the

stresses are not independent and can be expressed as linear

combinations of the stresses at the D þ 1 nodes of the

extension simplex. Dummy nodes appear only in extension

elements of types up to D 2 1 and are needed solely for the

purpose of enforcing interelement discontinuity

equilibrium.

Using the range of extension elements defined above it is

possible to generate a statically admissible stress field, and

thus obtain a rigorous lower bound on the true collapse load,

for any semi-infinite domain. Even though a solution using

extension elements is always a strict lower bound, it may

considerably underestimate the true collapse value if the

regular finite element mesh does not cover the plastic

region. This implies that the solutions for all semi-infinite

problems should be computed at least twice, once with

extension elements and once without them, in order to verify

their quality. If these two solutions differ significantly, then

the regular mesh should be extended more deeply into the

body and the process repeated.

As the theoretical aspects of extending the admissible

stress field in a semi-infinite domain have now been

discussed, we can proceed with a description of the scheme

for constructing the extension elements in a dimensionally

independent manner. Using the terminology described

earlier, the process starts by generating ‘type 1’ extension

elements on all sides of the current subdomain which are of

semi-infinite extent. These sides are part of the domain’s

Fig. 20. Generation of extension elements in 2D.
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exterior boundary and, as shown in Fig. 20(a), are not

subject to boundary, loading or subdomain continuity

conditions. Because each type 1 element forms a parallelo-

gram, all extension faces need to be split using the ‘fine’

subdivision process prior to adding these elements. The

process for splitting the extension faces is identical to that

described in Section 4 and is shown in Fig. 20(b). When

forming the type 1 extension elements, each side is extended

along the direction of one of the corresponding subdomain

edges or, if this lies outside the extension sector, the nearest

permissible extension direction (Fig. 20(c)). The boundary

nodes on the sides of the newly created extension elements,

where appropriate, inherit the boundary conditions from the

nearest node on the corresponding side of the parent

subdomain. Once all the type 1 extension elements have

been generated, voids may still remain in the stress field.

These are remedied automatically by looking for gaps

between all type 1 extension elements and filling any voids

with type i extension elements. During this stage, we use

the topology and boundary condition information from the

extension elements of type i 2 1; and the index i ranges

from 2 to D (Fig. 20(d)). The steps involved in generating

extension elements for the general 3D case are shown in

Fig. 21.

When generating the extension elements, it is con-

venient to arrange the node numbers so that the

determinant formed by the first D þ 1 lots of nodal

coordinates is positive (thus signifying a positive volume).

The numbering system shown in Fig. 22 is convenient for

controlling the element topology and allows simple logic

to be used for the level-by-level void filling procedure

described above. In our generation scheme, we can skip

consideration of the boundary conditions as these are

inherited completely from the nearest regular node. When

imposing the discontinuity conditions, option 1 of Section

5 is employed to generate the local coordinate system

using the first D nodes on the appropriate face of the

extension element.

Fig. 21. Generation of extension elements in 3D.
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7. Conclusions

A general strategy for generating lower bound finite

element meshes in D-dimensions has been described. The

procedure is based on a parametric mapping technique,

coupled with midpoint splitting of subdomains, and permits

the user to control the distribution of the discontinuities and

elements precisely. Although it is not fully automatic, the

algorithm is fast, generates extension elements, and can be

used for one-, two- and three-dimensional geometries.
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in French.

[5] Price MA, Armstrong CG. Hexahedral mesh generation by medial

surface subdivision. Part I. Solids with convex edges. Int J Numer

Meth Engng 1995;38(19):3335–59.

[6] Price MA, Armstrong CG. Hexahedral mesh generation by medial

surface subdivision. Part II. Solids with flat and concave edges. Int J

Numer Meth Engng 1997;40(1):111–36.

[7] Steinmueller G. Restrictions in the application of automatic mesh

generation schemes by isoparametric coordinates. Int J Numer Meth

Engng 1974;8:289–94.

[8] Subramanian G, Prasanth A, Raveendra VVS. Algorithm for two- and

three-dimensional automatic structured mesh generation. Comput

Struct 1996;61(3):471–7.

[9] Zienkiewicz OC, Phillips DV. An automatic mesh generation scheme

for plane and curved surfaces by isoparametric coordinates. Int J

Numer Meth Engng 1971;3(4):519–28.

[10] Zienkiewicz OC, Taylor RL. The finite element method, 4th ed. New

York: McGraw-Hill; 1989.

Fig. 22. Extension element numbering scheme: (a) one-dimension, (b) and (c) two dimensions, and (d), (e) and (f) three dimensions.

A.V. Lyamin, S.W. Sloan / Advances in Engineering Software 34 (2003) 321–338338


	Mesh generation for lower bound limit analysis
	Introduction
	Lower bound mesh generation by parametric mapping
	Decomposition into subdomains
	Meshing of subdomains
	Local coordinate systems
	Generation of extension elements
	Conclusions
	References


