
CONSTRAINED A FAST ALGORITHM FOR GENERATING
DELAUNAY TRIANGULATIONS

004s7949/93 56.00 + 0.00
if) 1993 Pcrgamon Press Ltd

S. W. SLOAN
Department of Civil Engineering and Surveying, University of Newcastle, Shortland,

NSW 2308, Australia

{Received 4 March 1992)

Abstract-A fast algorithm for generating constrained two-dimensional Delaunay triangulations is
described. The scheme permits certain edges to be specified in the final t~an~ation, such as those that
correspond to domain boundaries or natural interfaces, and is suitable for mesh generation and contour
plotting applications. Detailed timing statistics indicate that its CPU time requhement is roughly
proportional to the number of points in the data set. Subject to the conditions imposed by the edge
constraints, the Delaunay scheme automatically avoids the formation of long thin triangles and thus gives
high quality grids. A major advantage of the method is that it does not require extra points to be added
to the data set in order to ensure that the specified edges are present.

I~RODU~ON

Triangulation schemes are used in a variety of
scientific applications including contour plotting,
volume estimation, and mesh generation for finite
element analysis. Some of the most successful tech-
niques are undoubtedly those that are based on the
Delaunay triangulation.

To describe the construction of a Delaunay triangu-
lation, and hence explain some of its properties, it is
convenient to consider the corresponding Voronoi
diagram (which is also known as the Dirichlet
tessellation). The Voronoi diagram for seven points
in the plane is shown by the dotted lines in Fig. 1.
Each Voronoi polygon is constructed by drawing
perpendicular bisectors through the lines that connect
each point to its nearest neighbours. Every polygon
is associated uniquely with a single point and all
sites within a polygon are closer to this point than
any other point in the data set. Because of this last
property, Voronoi diagrams are often used in geo-
metric algorithms which require nearest neighbour
searching.

Once the Voronoi diagram for a set of points is
known, the corresponding Delaunay triangulation is
readily computed by connecting all pairs of points
which share a polygon boundary (see Fig. 1). Gener-
ally speaking, each vertex of the Voronoi diagram
is located at the point of contact of three adjacent
polygons and, hence, defines the circum~ntre for
a Delaunay triangle. This last condition implies that
the circumcircle for each triangle is ‘empty’, since
it may not contain a vertex. Except in isolated
instances, the Delaunay triangulation associated with
an arbitrary set of points is unique. One important
case of a nonunique triangulation occurs for a set
of four points which lie exactly on the vertices of a
square, as shown in Fig. 2. This arrangement is said

to be degenerate since two valid Delaunay triangu-
lations are possible. Although it leads to a loss of
uniqueness, degeneracy is seldom a cause for concern
since a triangulation may always be generated by
making an arbitrary, but consistent, choice between
two alternative patterns.

One major advantage of the Delaunay triangu-
lation, as opposed to a triangulation constructed
heu~stically, is that it automati~ily avoids the
creation of long thin triangles, with small included
angles, wherever this is possible. Indeed, Lawson [l]
has proved that the Delaunay triangulation is, by
definition, locally equiangular. This means that for
every convex quadrilateral formed by two adjacent
triangles, the minimum of the six angles in the two
triangles is greater than it would have been if the
alternative diagonal had been drawn and the other
pair of triangles chosen. Because of this property,
Delaunay triangulations are a natural choice for
mesh generation in finite element analysis and
contour plotting applications.

A number of algo~thms for generating the
Delaunay triangulations have been proposed, includ-
ing [l-6]. Operation counts for each of these schemes,
expressed in terms of the number of points in the
data set IV, are shown in Table 1. Note that the
average-case counts are for the standard example of
a set of points distributed randomly over a unit square
and give some indication of each algorithm’s ex-
pected performance on practical problems. The worst-
case counts, on the other hand, are often derived from
contrived examples, which rarely occur in practice,
and do not necessarily indicate the overall usefulness
of an algorithm. Although the first scheme of Lee and
Schachter [3] is asymptotically the most efficient, it is
difficult to implement and does not appear to have
been widely used. Efficient FORTRAN implemen-
tations of the Watson [4] and Gline and Renka (51

442 s. W. SLOAN

Table 1. Operation counts for various Delaunay schemes

Algorithm Average case Worst case

Cline and Renka [5] 0(N4:‘) O(N’)
Green and Sibson 121 O(N-‘!‘) O(N’)

L A Lawson [I] O(N1:rj O(NZj
Lee and Schachter [3] (1) O(N log, N) O(N tog, N)
Lee and Schachter [3] (2)
Sloan 161

O(N?*?) O(N-*)
O(N? O(N*)

Watsoni O(Nj’j O(N$

algorithms may be found, respectively, in Sloan and
Houlsby [7] and Renka [8]. Both of these algorithms
have been employed widely in finite element appli-
cations. A feature of Renka’s program [8] is that it
minimizes the storage needed to hold the triangu-
lation by using a very compact data structure. This
advantage, however, is gained at the expense of
introducing additional complexity into the code with
a subsequent loss in speed of execution. Another
FORTRAN program, which combines some of the
better features of the Lawson and Watson pro-
cedures, has been described by Sloan [6]. This paper
pays special attention to efficiency, and the perform-
ance of the proposed scheme is compared directly
with the above-mentioned implementations. For
the test case of 10,000 points distributed randomly
throughout a unit square, Sloan’s procedure is just
over four times faster than Sloan and Houlsby’s
code and slightly less than three times faster than
Renka’s code. When the number of points in the data
set is 1000, this speed-up is reduced to a factor of
around 1.6 for both cases. At the cost of some loss
in modularity, the performance of Sloan’s scheme
may be further enhanced by coding the most fre-
quently used subroutines ‘in-line’. This removes the
substantial overhead that is inherent in FORTRAN
calls to short subroutines and improves the perform-
ance of the implementation by a factor of between

Delaunay triangulation

i\ Voronoi diagram

empty circumcircle

circumcentre

Fig. 1. The Delaunay triangulation

Fig. 2. A degenerate Delaunay triangulation

two and three. Numerical experiments suggest that
the run time for the algorithm is, for all practical
purposes, directly proportional to N. This is substan-
tially less than the expected growth rate of O(N5j4)
shown in Table 1, which is not reached until N is
greater than several hundred thousand.

Many of the commonly cited Delaunay schemes
have been developed to triangulate the convex hull of
a set of points, and are not designed to incorporate
constrained edges. This capability is highly desirable
in finite element and terrain modelling applications,
where the user must be able to specify natural
boundaries and interfaces, but has proved to be
difficult to implement in an elegant and efficient
manner. In the FORTRAN program of Renka [8],
a facility is provided for adjusting an existing triangu-
lation so that specified edges are forced to be present.
This important feature is, unfortunately, undocu-
mented in the original paper of Cline and Renka [5]
and no description of the algorithm, apart from
comments in the source code, appears to be available.
A different approach for including edge constraints
has been proposed by De Floriani et al. [9], who first
compute the Delaunay triangulation for the points
on the domain boundary (at all times preserving its
integrity) and then add the internal points by incre-
mentally updating each existing triangulation. Whilst
operation counts suggest that this strategy is efficient
for simply connected regions, it is not suited to the
more general problem of multiply connected
domains. Another algorithm, due to Lee and Lin [IO],
tackles the problem of constrained edges by using a
visibility graph during the assembly of the Delaunay
triangulation. Although their scheme can incorporate
any number of boundaries of arbitrary shape, it is
complex to implement and typically requires O(N*)
operations to construct the triangulation. Using a
more sophisticated divide-and-conquer strategy,
Chew [I l] has proposed a constrained Delaunay
scheme which is ‘optimal’ in the sense that it has
a worst-case operation count of O(N log, N). This
procedure can theoretically deal with multiply
connected domains of arbitrary shape, but also
appears to be rather complex and no performance or
implementation details are provided.

In the finite element literature, a number of
Delaunay schemes for generating meshes of arbitrary
shape have recently been proposed. Schroeder and
Shepard [121, for example, proceed by first construct-
ing an initial unconstrained triangulation which is
then adjusted to incorporate the required boundaries.
Any holes in the boundary are ‘stitched’ together

An algorithm for generating klaunay triangulations 443

by using additional points to update the initial tri-
angulation. Weatherill [131 employs a similar strategy
except that the points defining each boundary are,
if necessary, supplemented with additional points
prior to computing the Delaunay triangulation. This
procedure requires an initial scan of the boundary
points and connectivities to ensure that the result-
ing grid satisfies the specified boundaries. In a com-
pletely different approach, developed by Lo [14], the
constrained Delaunay triangulation is assembled as
an advancing front and additional points are not
required. Lo advocates the use of a smoothing pro-
cedure to enhance the quality of the final triangu-
lation and his test results suggest that, for problems
of modest size, the overall CPU time of the algorithm
is directly proportional to N.

This paper describes an efficient algorithm for
computing constrained Delaunay triangulations. The
scheme may be used to t~angulate two-dimensional
bodies of arbitrary shape and is particularly suited
to mesh generation for contour plotting and finite
element analysis. The algorithm first assembles a
simple unconstrained t~anguiation and then updates
this, if necessary, to force each of the constrained
edges to be present. All of the edge constraints can
be satisfied without inserting additional points into
the t~angulation. Detailed statistics indicate that the
CPU time of the scheme is, for all practical purposes,
directly proportional to the number of points in the
data set.

ALGORITHM FOR CONSTRUCTiNG A DELAUNAY
TRIANGULATION

In the first stage of our constrained Delaunay
scheme, the algorithm of Sloan (61 is used to construct
a simple unconstrained triangulation for the points.
This initial grid does not necessarily include all of the
desired edges and needs to be updated in the second
phase. As discussed previously, Sloan’s scheme is
considerably faster than the Watson [4] and Cline and
Renka [5] schemes and is also numerically robust.
It has the further advantage in that it generates, as a
by-product, an adjacency list for each of the triangles.
This information, together with the list of vertices for
each triangle, completely specifies the triangulation in
a manner which is most convenient for finite element
and contouring applications. The basic steps in the
algorithm are as follows:

1. (Normalize coordinates of points.) Scale the
coordinates of the points so that they all lie between
0 and 1. This scaling should be uniform so that the
relative positions of the points are unchanged.

2. (Sort points into bins.) Cover the region to be
triangulated by a rectangular grid so that each
rectangle (or bin) contains roughly N”* points. Label
the bins so that consecutive bins are adjacent to one
another, for example by using column-by-column or
row-by-row ordering, and then allocate each point to
its appropriate bin. Sort the list of points in ascending

sequence of their bin numbers so that consecutive
points are grouped together in the x-y plane.

3. (Estabhsh the supertriangle.) Select three
dummy points to form a supertriangle that com-
pletely encompasses all of the points to be triangu-
lated. This supertriangle initially defines a Delaunay
triangulation which is comprised of a single triangle.
Its vertices are defined in terms of normalized coordi-
nates and are usually located at a considerable dis-
tance from the window which encloses the set of
points.

4. (Loop over each point.) For each point P in the
list of sorted points, do steps 5-7.

5. (Insert new point in triangulation.) Find an
existing triangle which encloses P. Delete this triangle
and form three new triangles by connecting P to each
of its vertices. The net gain in the total number of
triangles after this stage is two. The searching algor-
ithm of Lawson [I] may be used to locate the triangle
containing P efficiently. Because of the bin sorting
phase, only a few triangles need to be examined if the
search is initiated in the triangle which has been
formed most recently.

6. (Initialize stack.) Place all triangles which are
adjacent to the edges opposite P on a last-in-first-out
stack. There is a maximum of three such triangles.

7. (Restore Delaunay t~angulation.) While the
stack of triangles is not empty, execute Lawson’s
swapping scheme, as defined by steps 7.1-7.3.

7.1.

7.2.

7.3.

Remove a triangle which is opposite P
from the top of the stack.
If P is outside (or on) the circumcircle for
this triangle, return to step 7.1. Else, the
triangle containing P as a vertex and the
unstacked triangle form a convex quadri-
lateral whose diagonal is drawn in the
wrong direction. Swap this diagonal so that
two old triangles are replaced by two new
triangles and the structure of the Delaunay
triangulation is locally restored.
Place any triangles which are now opposite
P on the stack.

In step 1, the coordinates for each of the points are
normalized using the simple formulae

where d,,, = max { x,,, - x,,,,” , y,,, - ymin } is the
maximum dimension of the bounding window. This
scaling ensures that all of the coordinates are between
0 and 1 but does not modify the relative positions of
the points in the x-y plane. The use of normalized
coordinates, although not essential, reduces the
effects of roundoff error and is also convenient from
a computational point of view.

A key feature of the above scheme is that it is
essentially recursive, with each point being intro-
duced, one at a time, into an existing Delaunay
triangulation. To update the triangulation at each

444 SW. SLOAN

stage, we first search the grid, using the algorithm of
Lawson [I], to find an existing triangle which encloses
the new point. This enables the point to be inserted
in the triangulation and the Delaunay condition is
then restored by using a triangle-swapping algorithm,
also due to Lawson [l]. For the searching phase to
be fast, it is essential that a minimum number of
triangles are inspected, especially for large problems.
The purpose of step 2 is to sort the points which
are close together into clusters, with roughly N”*
points in each cluster, so that the Lawson search is
very efficient. By initiating the search in the triangle
that has been formed most recently, the Lawson
procedure typically examines only 0(N”4) triangles
before the search is terminated. One possible method
of arranging the bins for sorting the points into
clusters is shown in Fig. 3. In this scheme, the bin
number for each point is given by

b=ixn+j+l, forieven

b = (i + 1)n -j, for i odd,

where the row and column indices (i,j) are computed
from

i = int(0.99 x n x j/p,,,)

j = int(0.99 x n x a/.?,,,)

and n, the number of bins in the x- and y-directions,
is equal to N’14 (to the nearest integer). The factor of
0.99 is required to ensure that points with the maxi-
mum coordinates do not fall outside the grid. Once
they have all been assigned to their appropriate bins,
the points may be grouped into the required clusters
by sorting them in ascending sequence of their bin
numbers. Because all of the bin numbers, which act
as ‘keys’, are integers that lie in a known range, the
pocket sort of Knuth [15] may be used to order the
points in only O(N) operations. This step was orig-
inally implemented using the quicksort algorithm [6],
but this requires O(N log, N) operations and is
slower than the pocket sort algorithm by a factor of
around three. It is perhaps worth remarking that
the bin sorting phase is an optional component of the
triangulation scheme. The results reported in [6],
however, suggest that this step is usually worthwhile
as it adds only a slight overhead and typically reduces
the execution time of the algorithm significantly. We
will examine this question in more detail in a later
section.

In step 3, it is convenient to number the vertices
of the supertriangle as N + 1, N + 2 and N + 3
and allocate them normalized coordinates of
(- 100, - 100) (100, - 100) and (0, loo), respect-
ively. The size and shape of the supertriangle may be
chosen arbitrarily, the only restriction being that it
must enclose all of the points in the data set. Note
that if the vertices of the supertriangle are very

. . :* l l
. .

0.. . . *a :

l . . ’ . .’

l ’
.* . .

l * M .
.

.
l . :

.

: l e*
. . . .

l :. .
. 9.’ .

N points fl bins fl points/bin

w............. . ..___________.
3 16 15 14 13 !

,.........)__
2 ; 9 10 11 12

:.............. ..~.__.______.
1 8 7 6 5 !

. ______.____c:
0 1 2 3 4

i
j 0 1 2 3

Fig. 3. Bin sorting procedure.

close to the bounding window for the set of points,
the outer boundary of the resulting unconstrained
Delaunay triangulation may be not be strictly convex.
This is not an important issue for most applications
and may be resolved by simply relocating the vertices
at a greater distance from the bounding window. The
use of the supertriangle, which was first proposed by
Watson [4], ensures that each point can be inserted
inside an existing grid, and permits the Delaunay
triangulation to be constructed in a simple and
elegant manner.

The data structure used to hold the triangulation
is shown in Fig. 4. The vertices for each triangle are
listed anticlockwise and stored in a single column
of a two-dimensional array V. Similarly, the list of
adjacent triangles are held in the two-dimensional

triangle triangle

Fig. 4. Data structure for Delaunay triangulation.

An algorithm for generating Delaunay triangulations 445

array T, with a zero denoting that the side lies on a
boundary.

In the first stage of step 5, it is necessary to
locate a triangle which encloses the new point P. The
search is initiated in the triangle which was formed
last and uses Lawson’s algorithm to march from
one triangle to the next in the general direction of P.
This ingenious strategy removes the need to search
through the entire triangdlation, and is shown in
Fig. 5. Once the enclosing triangle is found, it is
deleted and the new point is inserted into the grid by
connecting P to each of its vertices. This process gives
a net gain in the total number of triangles of two and
is illustrated in Fig. 6. Since we start out with a single
supertriangle, and each new point creates two new
triangles, the final number of triangles is equal to
2Nfl.

In steps 6 and 7, the triangulation is restored to
a Delaunay triangulation using Lawson’s swapping
algorithm. After the insertion of P, all the triangles
which are now opposite P are placed on a stack, as
shown in Fig. 6. Each triangle is then removed from
the stack, one at a time, and a check is made to see
if P lies inside its circumcircle. If this is the case, then
the two triangles which share the edge opposite P
violate the Delaunay condition and form a convex
quadrilateral with the diagonal drawn in the wrong
direction. To satisfy the Delaunay constraint that
each triangle has an empty circumcircle, the diagonal
of the quadrilateral is simply swapped, and any
triangles which are now opposite P are placed on the
stack. This process is repeated until the stack is
empty, which signals that the triangulation has
been restored to a Delaunay triangulation, and is
illustrated in Fig. 7. When implementing Lawson’s
swapping algorithm, it is essential that the circum-
circle test is computed efficiently and accurately, as
this step accounts for a significant proportion of the
total CPU time and determines the validity of the
triangulation. A fast and numerically robust method
for performing this test has been given by Cline and
Renka [S]. Consider the two adjacent triangles shown

triangle enclosing

search started from last formed triangle

Fig. 5. Lawson’s search.

insert P

triangles I-1 , TX , Ts placed on stack

Fig. 6. Insertion of new point in triangulation.

in Fig. 8. The Delaunay constraint stipulates that the
diagonal V,-V, is replaced by the diagonal P-V, if P
lies inside the circumcircle for the triangle V1-V2-V,.
From Fig. 8 we see that P lies on the circumcircle
when 2a + 28 = 2n and, thus, a swap must be per-
formed when a + /I > IL. Since a + fi < 2n, the swap
condition also implies that

sin(a + /.I) = cos a sin fl + sin a cos /I < 0

Stacked triangles are TV , T-J , T3

Check each triangle on
the stack to see if P is
inside its circumcircle

Remove triangle TJ
from stack

Point P is inside circum-
circle for triangle T3

Swap diagonal opposite P

Repeat above steps until
stack is empty

Fig. 7. Lawson’s swapping algorithm.

446 S. W. SLOAN

(ii) If cos a 2 0 and cos b > 0 then set the swap
test to ‘false’ and exit.

(iii) If cos a < 0 and cos h < 0 then set the swap
test to ‘true’ and exit.

(iv) Set sin ab = (x,3y23 - x,,y,,) c0S b + (x,,y,,
- X,,Y*,) cos a.

(v) If sin ab < 0 then set the swap test to ‘true’ and
exit.

(vi) Set the swap test to ‘false’.

cr+b=n

Fig. 8. Geometry for circumcircle test.

Although this revised procedure introduces a number
of additional comparisons, it has the great advantage
of being numerically stable.

which may also be written as
The expected run time performance of the triangu-

lation algorithm may be determined by analysing

I

(43x23 +Y,3Y,,)(x*PYylP- XIPY,,) + b,3Y*3 - X23Y,,)(X2PX,P + YZPYIP) < o

[(X:3+Y:3)(X:3+Y:3)(X:P+Y:P)(X:P+Y:P)l’r2
where

x13 = XI -x3, YI3 =Yl -Y3,

x23=x2-x3, Y23 =Y2 -Y3,

XIP = XI - XP, YIP = Yl -YP,

x2p = x2 - xp, Y,P=Y,-YP.

Multiplying through by the denominator and
rearranging, this test may be expressed in the more
efficient form

(x,3x23 + Y,3Y23)tx2PYlP - xIPY2P)

< (x23Y,3 - x,3Y23)(x2Px,P +Y,PY,P) tl)

which requires only ten multiplications, two
additions and two subtractions. Although the circum-
circle test of eqn (1) is very fast, the effects of round-
off error may cause it to become inaccurate when
sin(cc + 8) approaches zero. This condition arises
when:

(i) z +/I is near 7r,
(ii) x and b are both near 0,

(iii) LX and /l are both near II,

and has been discussed at length in [S]. The first case
indicates that P lies very close to, or precisely on,
the circumcircle for the triangle V,-I’,--V, and may
be safely ignored. The second and third cases, on the
other hand, occur when the vertices of the quadri-
lateral V,-P-V,-V, are very nearly collinear and
must be dealt with to preserve the correctness of the
triangulation. In particular, it is necessary to always
perform a swap when CI and /I are both near rr. In light
of these considerations, Cline and Renka [S] sug-
gested that the circumcircle test of eqn (1) should be
modified as follows:

(i) Set cos u = xl3x23 + Yl3Y23 and cos b =

-X?PXlP + Y2PYlP.

the complexity of each of its steps. As discussed
previously, the bin sort in step 2 may be implemented
so that it requires O(N) operations. Even for large
problems, only a small fraction of the total CPU time
is spent in this phase and the bulk of the compu-
tational work is done by the searching and swapping
procedure of steps 5 and 7. To estimate the expected
behaviour of step 5, it is reasonable to assume that
the points are distributed in the x-y plane so that
each bin contains roughly O(N”‘) points. For this
case, 0(N’j4) triangles need to be searched to find the
triangle which encloses the newly introduced point.
Since this step is repeated N times, it gives rise to
an overall operation count of 0(N5j4). Somewhat
surprisingly, the swapping scheme in step 7 typically
requires only a constant number of operations.
Indeed, this step has a total operation count of O(N),
since numerical experiments suggest that the intro-
duction of each new point requires an average of
about three swaps to restore the Delaunay structure.
Interestingly, the observed run times’ for Sloan’s
scheme usually grow at a rate which is substantially
less than the theoretical prediction of 0(N5’4). This
apparent discrepancy is due to the fact that the time
required for one iteration of the search procedure is
much less than the time required for one iteration of
the swapping procedure. Even for large values of N,
the average number of searches is small and most of
the time is spent in the swapping phase. Unless N is
indeed huge, the average run time of the algorithm is
very nearly O(N).

ALGORITHM FOR CONSTRUCTING A CONSTRAINED
DELAUNAY TRIANGULATION

The Delaunay triangulation discussed in the
previous section is unconstrained and does not
necessarily include all of the prescribed edge con-
straints. In finite element and contouring appli-
cations, these edge constraints typically correspond
to domain boundaries or natural discontinuities

An algorithm for generating Delaunay triangulations 441

(such as an interface between two different types of
material). The algorithm for modifying the existing
Delaunay triangulation, so that certain edges are
forced to be present, is as follows:

1. (Loop over each constrained edge.) Let each
constrained edge be defined by the vertices Vi and Vj.
For each of these edges, do steps 2-4.

2. (Find intersecting edges.) If the constrained
edge V,-Vj is already present in the triangulation,
then go to step 1. Else, search the triangulation and
store all of the edges that cross Vi-Vj.

3. (Remove intersecting edges.) While some edges
still cross the constrained edge Vi-V,, do steps 3.1
and 3.2.

3.1. Remove an edge from the list of edges that
intersect Vi-V,. Let this edge be defined by
the vertices Vk and V,.

3.2. If the two triangles that share the edge
V,-V, do not form a quadrilateral which is
strictly convex, then place Vk-V, back on
the list of intersecting edges and go step 3.1.
Else, swap the diagonal of this strictly
convex quadrilateral so that two new tri-
angles are substituted for two old triangles.
Let the new diagonal be defined by the
vertices V,,, and V,. If V,,,-V,, still intersects
the constrained edge Vi-c, then place it on
the list of intersecting edges. If V,-V, does
not intersect Vi-Vj, then place V,,-V, on a
list of newly created edges.

4. (Restore Delaunay triangulation.) Repeat steps
4.1-4.3 until no further swaps take place.

4.1. Loop over each edge in the list of newly
created edges.

4.2. Let the newly created edge be defined by
the vertices Vk and V,. If the edge V,-V, is
equal to the constrained edge Vi-Vj, then
skip to step 4.1.

4.3. If the two triangles that share the
edge V,-V, do not satisfy the Delaunay
criterion, so that a vertex of one of the
triangles is inside the circumcircle of the
other triangle, then these triangles form a
quadrilateral with the diagonal drawn in
the wrong direction. In this case, the edge
Vk-V, is swapped with the other diagonal
(say) V,,,-V,, thus substituting two new
triangles for two new triangles, and V,-V,
is replaced by V,,,-V, in the list of newly
created edges.

5. (Remove superfluous triangles.) Remove all
triangles that contain a supertriangle vertex or lie
outside the domain boundary.

This algorithm is similar to the one used in the
code in [5], although our data structure and method
of implementation are somewhat different. The
scheme is essentially comprised of two distinct
phases. In the first phase, each constrained edge is
forced to be present in the triangulation by using

a triangle swapping procedure to remove all of
the intersecting edges. The swapping algorithm is
designed to test all possible arrangements and will
always find a triangulation which includes the con-
strained edge. In the second phase, each new edge
that is formed by the triangle swapping process,
except the constrained edge, is ‘optimized’ so that
it satisfies the Delaunay condition. Subject to the
restrictions imposed by the edge constraints, which
may force some triangles to have non-empty circum-
circles, the final grid is thus a Delaunay triangulation.

A rigorous complexity analysis of the scheme is
difficult because the number of operations required
depends inevitably on the problem at hand. We may,
however, make some preliminary remarks which are
based on empirical observations.

In step 2, it is necessary to examine an average
of about three edges to determine whether the pre-
scribed edge is present in the triangulation. To make
this step efficient, it is convenient to hold a list
of triangle numbers for each vertex, so that we can
readily locate a triangle to which a given vertex
belongs. This vector must be of length N + 3, and
provides a starting triangle to begin the search for the
edges which cross the constrained edge V,-Vj. To find
all the intersections, we circle the vertex Vi until the
first crossing is detected and then march from one
triangle to the next in the general direction of the
vertex V,. This procedure, shown in Fig. 9, is efficient
since each intersecting edge needs to be inspected only
once to form the list of crossings.

The iterative algorithm of step 3, which rearranges
the grid to incorporate the edge K-V,, hinges on the
fact that all possible triangulations for a set of points
can be found by systematically swapping the diagonal
in each convex quadrilateral formed by a pair of
triangles. For the case of a constrained edge which is
crossed by n edges, it is clear that at least n swaps
must be performed. Empirical evidence suggests that
one iteration of this step typically reduces the number
of crossings by a factor of two and, hence, it is usual
to observe that roughly O(log,n) iterations in total
are required. The algorithm for removing all of the
edges which intersect a constrained edge is illustrated
in Fig. 10.

constrained edge q - 6

search started in any
triangle containing V,

intersecting edges are VI - V2 , V2 - V3 , v3 - v4

Fig. 9. Detecting constrained edge intersections.

448 S. W. SLOAN

constrained edge V, - v

VI-v;-V2-V3 isconvex
replace VI- Vz with v-V3

V3-i5-v2-v4 isconvex
replace Vz- V3 with V;: - V4

c; d
V3 - vi - V4 - I$ is COIIWX

replace V3- V4 with F- q

4
v,

v, .’
,,*’

@

c;
(,,’

d
,.,’

Q-5 isnowin
___*._s. v, triangulation

newly created edges are
&k$,Q-v~,f+v~

Fig. 10. Removing constrained edge intersections.

The optimization iterations of step 4, shown in
Fig. 11, serve to restore the Delaunay condition for
each new edge created in step 3, except for the
constrained edge, and ensure that the overall triangu-
lation is of good quality. For most practical problems
this phase requires only two or three sweeps through
the list of newly created edges and, thus, typically
gives rise to an operation count of O(n).

The task of clipping unwanted triangles from
the grid, which is the final stage in the triangulation
scheme, may be implemented so that only O(N)
operations are required. If the constrained edges
define domain boundaries, we first trace each bound-
ary and mark every triangle that needs to be deleted.
These marked triangles are then removed in a single
pass and it is unnecessary to inspect every triangle in
the grid.

APPLICATIONS

The constrained triangulation scheme described
in the previous sections has been impIemented in
standard FORTRAN 77. For an arbitrary triangu-
lation with N points and N, constrained edges, the
code requires 17N + 2N, + 18 words of memory,
including the storage for holding the coordinates, and
has been used successfully on data sets with several
hundred thousand points. After computing the tri-
angulation, each triangle that does not share a con-
strained edge is checked to ensure that it satisfies the
Delaunay condition by having an empty circumcircle.
In addition, every triangle must have a positive area
and the triangulation as a whole must obey Euler’s

formula for planar graphs. For a multiply connected
domain with H ‘holes’, the latter condition may be
written as N + N, + H - N, = 1, where N, and N,
denote, respectively, the total number of triangles and
edges in the grid. Numerous other checks, such as a
test for coincident points, are also included to verify
the integrity of triangulation.

To give some indication of the efficiency of the
algorithm, we consider a set of N points distributed
randomly over a unit square. For various values
of N, ranging from 100 to 20,000, we compute both
a simple Delaunay triangulation and a constrained
Delaunay triangulation. The latter cases are obtained
from the former cases merely by imposing N/l0 edge
constraints, which are selected at random, on the
data set. Since they often span across the domain and
give rise to a large number of intersections, these
constrained edges pose a severe test for the scheme.
In most practical applications, particularly in finite
element analysis, it is usual for each constrained edge
to be intersected by only a few edges.

Figures 12 and 13 illustrate, respectively, the un-
constrained and constrained Delaunay triangulations
for the case of 100 points. In Fig. 13, the constrained
edges are indicated by boid lines. The results for the
various test cases are shown in Table 2. These timing
statistics were obtained using the internal clock of the
machine, and include the time required to check both
the data and the triangulation.

When the bin sort is used, the growth in the CPU
time for the unconstrained t~angulation scheme is
very nearly linear with N. Indeed, averaging the
results for the values of N considered, the observed

newly created edges are
l+~,F+V3,~-V4

replace vi- ~3 with

I$ in circumcircle

replace 6 - V4 with

all edges now satisfy the
Delaunay condition subject
to the edge constraint im-

V4 posedby 6-6

Fig. Il. Restoring constrained Delaunay condition.

An algorithm for

Fig. 12. Delaunay triangulation for 100 points.

generating Delaunay triangulations

run times are approximately 0(N’.06). For the con-

strained cases, with N/10 arbitrary edge constraints,

the observed growth rate is slightly greater than linear
and has an average value of O(N’.‘*).

Without the bin sort, the observed run times for
the unconstrained and constrained schemes may be
respectively approximated as 0(N1.2g) and O(N’.*‘).
When the points are distributed over the domain in
a reasonably uniform manner, the importance of the
bin sorting procedure increases with increasing N.
For an N value of 1000, the bin sort reduces the run
time of the algorithm by roughly 20%. This reduction
increases to around 50% once N reaches 20,000.

relative to that of the corresponding unconstrained
case, by a factor of around 2. The time required to
incorporate each constrained edge is, as discussed
previously, dependent on how many times it is
crossed by other edges in the initial triangulation.
Since the edge constraints have been generated
randomly and often intersect a lot of edges in the
unconstrained triangulation, these test cases are
especially severe and unlikely to occur in practice.
In the majority of applications encountered by the
author, the overhead associated with incorpor-
ating realistic edge constraints is typically less than
10%.

For our model problem, the imposition of the As a final example, the constrained Delaunay
constrained edges typically increases the CPU time, scheme was used to generate the illustrative finite

Fig. 13. Delaunay triangulation for 100 points
random edge constraints.

with 10

Table 2. Timing statistics for triangulation of points distributed randomly over a
unit square

Unconstrained Delaunay Constrained Delaunay
triangulation triangulation

N CPU time a CPU time a

100 0.10
0.91

1000 0.99 1.42
1.29 1.77

5ooo 5.82
10.41

10,000 12.28
26.55

20,000 25.74 43.10
68.10 86.69

1.00
1.16

1.10
1.30

1.08 1.16
1.35 1.33

1.07
1.36

0.11
0.12

9.38
14.29

20.98
35.94

1.11
1.17

1.17
1.30

1.04
1.27

Notes:
1. All times in CPU seconds for Apollo DN3500 (25 MHz Motorola 68030 with

Weitek floating point accelerator).
2. Values for the exponent o obtained by assuming CPU times are O(N”).
3. Constrained Delaunay triangulations have N/l0 edges prescribed randomly.
4. Bold face entries are for runs without the bin sort.

D. F. Watson, Computing the n-dimensional Delaunay
triangulation with application to Voronoi polytopes.
Cornpurer Jnl 24, 167-172 (1981).
A. K. Cline and R. Renka, A storage efficient method
for construction of a Thiessen triangulation. Rocklj
Mounfain J. Math. 14, 119-139 (1984).
S. W. Sloan, A fast algorithm for constructing
Delaunay triangulations in the plane. Advances in Engng
Sqfiware 9, 34-55 (1987).

S. W. SLOAN

4

5

6.

7.

8.

S. W. Sloan and G. T. Houlsby, An implementation
of Watson’s algorithm for computing two-dimensional
Delaunay triangulations. Advances in Engng S’oftware 6,
192-197 (1984).

Fig. 14. Illustrative finite element mesh with 509 points and
818 triangles.

element mesh shown in Fig. 14. The grid has 509

points, 818 triangles and required 0.55 seconds of
CPU time to generate on an Apollo DN3500.

9.

10.

II.

12.

13.

14.

15.

R. L. Renka, Algorithm 624: Triangulation and inter-
polation at arbitrarily distributed points in the plane.
ACM Trans. Mafh. .Soffware 10, 440-442 (1984).
L. De Floriani, B. Falciendo and C. Pienovi, Delaunay-
based representation of surfaces defined over arbitrarily
shaped domains. Computer Vision, Graphics and Image
Processing 32, 127-140 (1985).
D. T. Lee and A. K. Lin, Generalized Delaunay triangu-
lations for planar graphs. Discrete and Computational
Geometry 1, 201-217 (1986).
L. P. Chew, Constrained Delaunay triangulations.
AIgorithmica 4, 97-108 (1989).
W. J. Schroeder and M. S. Shepard, Geometry-based
fully automatic mesh generation and the Delaunay
triangulation. Znt. J. Numer. Meth. Engng 26,
2503-2515 (1988). REFERENCES

C. L. Lawson, Software for C’ surface interpolation.
In Mathematical Sofiware III (Edited by J. R. Rice),
pp. 161-194. Academic Press, New York (1977).
P. J. Green and R. Sibson, Computing Dirichlet tessel-
lations in the plane. Computer Jnl 21, 1688173 (1978).
D. T. Lee and B. J. Schachter, Two algorithms for
constructing a Delaunay triangulation. Inf. J. Computer
Inform. Sci. 9, 219-242 (1980).

N. P. Weatherill, The integrity of geometrical bound-
aries in the two-dimensional Delaunay triangulation.
Commun. Appl. Numer. Mefh. 6, 101-109 (1990).
S. H. Lo, Delaunay triangulation of non-convex planar
domains. Int. J. Numer. Meth. Engng 28, 2695-2707
(1989).
D. E. Knuth, Sorting and Searching: The Art of Com-
puter Programming III, pp. 170-178. Addison-Wesley,
MA (1973).

