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Abstract-A fast algorithm for generating constrained two-dimensional Delaunay triangulations is 
described. The scheme permits certain edges to be specified in the final t~an~ation, such as those that 
correspond to domain boundaries or natural interfaces, and is suitable for mesh generation and contour 
plotting applications. Detailed timing statistics indicate that its CPU time requhement is roughly 
proportional to the number of points in the data set. Subject to the conditions imposed by the edge 
constraints, the Delaunay scheme automatically avoids the formation of long thin triangles and thus gives 
high quality grids. A major advantage of the method is that it does not require extra points to be added 
to the data set in order to ensure that the specified edges are present. 

I~RODU~ON 

Triangulation schemes are used in a variety of 
scientific applications including contour plotting, 
volume estimation, and mesh generation for finite 
element analysis. Some of the most successful tech- 
niques are undoubtedly those that are based on the 
Delaunay triangulation. 

To describe the construction of a Delaunay triangu- 
lation, and hence explain some of its properties, it is 
convenient to consider the corresponding Voronoi 
diagram (which is also known as the Dirichlet 
tessellation). The Voronoi diagram for seven points 
in the plane is shown by the dotted lines in Fig. 1. 
Each Voronoi polygon is constructed by drawing 
perpendicular bisectors through the lines that connect 
each point to its nearest neighbours. Every polygon 
is associated uniquely with a single point and all 
sites within a polygon are closer to this point than 
any other point in the data set. Because of this last 
property, Voronoi diagrams are often used in geo- 
metric algorithms which require nearest neighbour 
searching. 

Once the Voronoi diagram for a set of points is 
known, the corresponding Delaunay triangulation is 
readily computed by connecting all pairs of points 
which share a polygon boundary (see Fig. 1). Gener- 
ally speaking, each vertex of the Voronoi diagram 
is located at the point of contact of three adjacent 
polygons and, hence, defines the circum~ntre for 
a Delaunay triangle. This last condition implies that 
the circumcircle for each triangle is ‘empty’, since 
it may not contain a vertex. Except in isolated 
instances, the Delaunay triangulation associated with 
an arbitrary set of points is unique. One important 
case of a nonunique triangulation occurs for a set 
of four points which lie exactly on the vertices of a 
square, as shown in Fig. 2. This arrangement is said 

to be degenerate since two valid Delaunay triangu- 
lations are possible. Although it leads to a loss of 
uniqueness, degeneracy is seldom a cause for concern 
since a triangulation may always be generated by 
making an arbitrary, but consistent, choice between 
two alternative patterns. 

One major advantage of the Delaunay triangu- 
lation, as opposed to a triangulation constructed 
heu~stically, is that it automati~ily avoids the 
creation of long thin triangles, with small included 
angles, wherever this is possible. Indeed, Lawson [l] 
has proved that the Delaunay triangulation is, by 
definition, locally equiangular. This means that for 
every convex quadrilateral formed by two adjacent 
triangles, the minimum of the six angles in the two 
triangles is greater than it would have been if the 
alternative diagonal had been drawn and the other 
pair of triangles chosen. Because of this property, 
Delaunay triangulations are a natural choice for 
mesh generation in finite element analysis and 
contour plotting applications. 

A number of algo~thms for generating the 
Delaunay triangulations have been proposed, includ- 
ing [l-6]. Operation counts for each of these schemes, 
expressed in terms of the number of points in the 
data set IV, are shown in Table 1. Note that the 
average-case counts are for the standard example of 
a set of points distributed randomly over a unit square 
and give some indication of each algorithm’s ex- 
pected performance on practical problems. The worst- 
case counts, on the other hand, are often derived from 
contrived examples, which rarely occur in practice, 
and do not necessarily indicate the overall usefulness 
of an algorithm. Although the first scheme of Lee and 
Schachter [3] is asymptotically the most efficient, it is 
difficult to implement and does not appear to have 
been widely used. Efficient FORTRAN implemen- 
tations of the Watson [4] and Gline and Renka (51 
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Table 1. Operation counts for various Delaunay schemes 

Algorithm Average case Worst case 

Cline and Renka [5] 0(N4:‘) O(N’) 
Green and Sibson 121 O(N-‘!‘) O(N’) 

L A Lawson [I] O(N1:rj O(NZj 
Lee and Schachter [3] (1) O(N log, N) O(N tog, N) 
Lee and Schachter [3] (2) 
Sloan 161 

O(N?*?) O(N-*) 
O(N? O(N*) 

Watsoni O(Nj’j O(N$ 

algorithms may be found, respectively, in Sloan and 
Houlsby [7] and Renka [8]. Both of these algorithms 
have been employed widely in finite element appli- 
cations. A feature of Renka’s program [8] is that it 
minimizes the storage needed to hold the triangu- 
lation by using a very compact data structure. This 
advantage, however, is gained at the expense of 
introducing additional complexity into the code with 
a subsequent loss in speed of execution. Another 
FORTRAN program, which combines some of the 
better features of the Lawson and Watson pro- 
cedures, has been described by Sloan [6]. This paper 
pays special attention to efficiency, and the perform- 
ance of the proposed scheme is compared directly 
with the above-mentioned implementations. For 
the test case of 10,000 points distributed randomly 
throughout a unit square, Sloan’s procedure is just 
over four times faster than Sloan and Houlsby’s 
code and slightly less than three times faster than 
Renka’s code. When the number of points in the data 
set is 1000, this speed-up is reduced to a factor of 
around 1.6 for both cases. At the cost of some loss 
in modularity, the performance of Sloan’s scheme 
may be further enhanced by coding the most fre- 
quently used subroutines ‘in-line’. This removes the 
substantial overhead that is inherent in FORTRAN 
calls to short subroutines and improves the perform- 
ance of the implementation by a factor of between 

Delaunay triangulation 

i\ Voronoi diagram 

empty circumcircle 

circumcentre 

Fig. 1. The Delaunay triangulation 

Fig. 2. A degenerate Delaunay triangulation 

two and three. Numerical experiments suggest that 
the run time for the algorithm is, for all practical 
purposes, directly proportional to N. This is substan- 
tially less than the expected growth rate of O(N5j4) 
shown in Table 1, which is not reached until N is 
greater than several hundred thousand. 

Many of the commonly cited Delaunay schemes 
have been developed to triangulate the convex hull of 
a set of points, and are not designed to incorporate 
constrained edges. This capability is highly desirable 
in finite element and terrain modelling applications, 
where the user must be able to specify natural 
boundaries and interfaces, but has proved to be 
difficult to implement in an elegant and efficient 
manner. In the FORTRAN program of Renka [8], 
a facility is provided for adjusting an existing triangu- 
lation so that specified edges are forced to be present. 
This important feature is, unfortunately, undocu- 
mented in the original paper of Cline and Renka [5] 
and no description of the algorithm, apart from 
comments in the source code, appears to be available. 
A different approach for including edge constraints 
has been proposed by De Floriani et al. [9], who first 
compute the Delaunay triangulation for the points 
on the domain boundary (at all times preserving its 
integrity) and then add the internal points by incre- 
mentally updating each existing triangulation. Whilst 
operation counts suggest that this strategy is efficient 
for simply connected regions, it is not suited to the 
more general problem of multiply connected 
domains. Another algorithm, due to Lee and Lin [IO], 
tackles the problem of constrained edges by using a 
visibility graph during the assembly of the Delaunay 
triangulation. Although their scheme can incorporate 
any number of boundaries of arbitrary shape, it is 
complex to implement and typically requires O(N*) 
operations to construct the triangulation. Using a 
more sophisticated divide-and-conquer strategy, 
Chew [I l] has proposed a constrained Delaunay 
scheme which is ‘optimal’ in the sense that it has 
a worst-case operation count of O(N log, N). This 
procedure can theoretically deal with multiply 
connected domains of arbitrary shape, but also 
appears to be rather complex and no performance or 
implementation details are provided. 

In the finite element literature, a number of 
Delaunay schemes for generating meshes of arbitrary 
shape have recently been proposed. Schroeder and 
Shepard [ 121, for example, proceed by first construct- 
ing an initial unconstrained triangulation which is 
then adjusted to incorporate the required boundaries. 
Any holes in the boundary are ‘stitched’ together 
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by using additional points to update the initial tri- 
angulation. Weatherill [ 131 employs a similar strategy 
except that the points defining each boundary are, 
if necessary, supplemented with additional points 
prior to computing the Delaunay triangulation. This 
procedure requires an initial scan of the boundary 
points and connectivities to ensure that the result- 
ing grid satisfies the specified boundaries. In a com- 
pletely different approach, developed by Lo [14], the 
constrained Delaunay triangulation is assembled as 
an advancing front and additional points are not 
required. Lo advocates the use of a smoothing pro- 
cedure to enhance the quality of the final triangu- 
lation and his test results suggest that, for problems 
of modest size, the overall CPU time of the algorithm 
is directly proportional to N. 

This paper describes an efficient algorithm for 
computing constrained Delaunay triangulations. The 
scheme may be used to t~angulate two-dimensional 
bodies of arbitrary shape and is particularly suited 
to mesh generation for contour plotting and finite 
element analysis. The algorithm first assembles a 
simple unconstrained t~anguiation and then updates 
this, if necessary, to force each of the constrained 
edges to be present. All of the edge constraints can 
be satisfied without inserting additional points into 
the t~angulation. Detailed statistics indicate that the 
CPU time of the scheme is, for all practical purposes, 
directly proportional to the number of points in the 
data set. 

ALGORITHM FOR CONSTRUCTiNG A DELAUNAY 
TRIANGULATION 

In the first stage of our constrained Delaunay 
scheme, the algorithm of Sloan (61 is used to construct 
a simple unconstrained triangulation for the points. 
This initial grid does not necessarily include all of the 
desired edges and needs to be updated in the second 
phase. As discussed previously, Sloan’s scheme is 
considerably faster than the Watson [4] and Cline and 
Renka [5] schemes and is also numerically robust. 
It has the further advantage in that it generates, as a 
by-product, an adjacency list for each of the triangles. 
This information, together with the list of vertices for 
each triangle, completely specifies the triangulation in 
a manner which is most convenient for finite element 
and contouring applications. The basic steps in the 
algorithm are as follows: 

1. (Normalize coordinates of points.) Scale the 
coordinates of the points so that they all lie between 
0 and 1. This scaling should be uniform so that the 
relative positions of the points are unchanged. 

2. (Sort points into bins.) Cover the region to be 
triangulated by a rectangular grid so that each 
rectangle (or bin) contains roughly N”* points. Label 
the bins so that consecutive bins are adjacent to one 
another, for example by using column-by-column or 
row-by-row ordering, and then allocate each point to 
its appropriate bin. Sort the list of points in ascending 

sequence of their bin numbers so that consecutive 
points are grouped together in the x-y plane. 

3. (Estabhsh the supertriangle.) Select three 
dummy points to form a supertriangle that com- 
pletely encompasses all of the points to be triangu- 
lated. This supertriangle initially defines a Delaunay 
triangulation which is comprised of a single triangle. 
Its vertices are defined in terms of normalized coordi- 
nates and are usually located at a considerable dis- 
tance from the window which encloses the set of 
points. 

4. (Loop over each point.) For each point P in the 
list of sorted points, do steps 5-7. 

5. (Insert new point in triangulation.) Find an 
existing triangle which encloses P. Delete this triangle 
and form three new triangles by connecting P to each 
of its vertices. The net gain in the total number of 
triangles after this stage is two. The searching algor- 
ithm of Lawson [I] may be used to locate the triangle 
containing P efficiently. Because of the bin sorting 
phase, only a few triangles need to be examined if the 
search is initiated in the triangle which has been 
formed most recently. 

6. (Initialize stack.) Place all triangles which are 
adjacent to the edges opposite P on a last-in-first-out 
stack. There is a maximum of three such triangles. 

7. (Restore Delaunay t~angulation.) While the 
stack of triangles is not empty, execute Lawson’s 
swapping scheme, as defined by steps 7.1-7.3. 

7.1. 

7.2. 

7.3. 

Remove a triangle which is opposite P 
from the top of the stack. 
If P is outside (or on) the circumcircle for 
this triangle, return to step 7.1. Else, the 
triangle containing P as a vertex and the 
unstacked triangle form a convex quadri- 
lateral whose diagonal is drawn in the 
wrong direction. Swap this diagonal so that 
two old triangles are replaced by two new 
triangles and the structure of the Delaunay 
triangulation is locally restored. 
Place any triangles which are now opposite 
P on the stack. 

In step 1, the coordinates for each of the points are 
normalized using the simple formulae 

where d,,, = max { x,,, - x,,,,” , y,,, - ymin } is the 
maximum dimension of the bounding window. This 
scaling ensures that all of the coordinates are between 
0 and 1 but does not modify the relative positions of 
the points in the x-y plane. The use of normalized 
coordinates, although not essential, reduces the 
effects of roundoff error and is also convenient from 
a computational point of view. 

A key feature of the above scheme is that it is 
essentially recursive, with each point being intro- 
duced, one at a time, into an existing Delaunay 
triangulation. To update the triangulation at each 
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stage, we first search the grid, using the algorithm of 
Lawson [I], to find an existing triangle which encloses 
the new point. This enables the point to be inserted 
in the triangulation and the Delaunay condition is 
then restored by using a triangle-swapping algorithm, 
also due to Lawson [l]. For the searching phase to 
be fast, it is essential that a minimum number of 
triangles are inspected, especially for large problems. 
The purpose of step 2 is to sort the points which 
are close together into clusters, with roughly N”* 
points in each cluster, so that the Lawson search is 
very efficient. By initiating the search in the triangle 
that has been formed most recently, the Lawson 
procedure typically examines only 0(N”4) triangles 
before the search is terminated. One possible method 
of arranging the bins for sorting the points into 
clusters is shown in Fig. 3. In this scheme, the bin 
number for each point is given by 

b=ixn+j+l, forieven 

b = (i + 1)n -j, for i odd, 

where the row and column indices (i,j) are computed 
from 

i = int(0.99 x n x j/p,,,) 

j = int(0.99 x n x a/.?,,,) 

and n, the number of bins in the x- and y-directions, 
is equal to N’14 (to the nearest integer). The factor of 
0.99 is required to ensure that points with the maxi- 
mum coordinates do not fall outside the grid. Once 
they have all been assigned to their appropriate bins, 
the points may be grouped into the required clusters 
by sorting them in ascending sequence of their bin 
numbers. Because all of the bin numbers, which act 
as ‘keys’, are integers that lie in a known range, the 
pocket sort of Knuth [15] may be used to order the 
points in only O(N) operations. This step was orig- 
inally implemented using the quicksort algorithm [6], 
but this requires O(N log, N) operations and is 
slower than the pocket sort algorithm by a factor of 
around three. It is perhaps worth remarking that 
the bin sorting phase is an optional component of the 
triangulation scheme. The results reported in [6], 
however, suggest that this step is usually worthwhile 
as it adds only a slight overhead and typically reduces 
the execution time of the algorithm significantly. We 
will examine this question in more detail in a later 
section. 

In step 3, it is convenient to number the vertices 
of the supertriangle as N + 1, N + 2 and N + 3 
and allocate them normalized coordinates of 
( - 100, - 100) (100, - 100) and (0, loo), respect- 
ively. The size and shape of the supertriangle may be 
chosen arbitrarily, the only restriction being that it 
must enclose all of the points in the data set. Note 
that if the vertices of the supertriangle are very 
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Fig. 3. Bin sorting procedure. 

close to the bounding window for the set of points, 
the outer boundary of the resulting unconstrained 
Delaunay triangulation may be not be strictly convex. 
This is not an important issue for most applications 
and may be resolved by simply relocating the vertices 
at a greater distance from the bounding window. The 
use of the supertriangle, which was first proposed by 
Watson [4], ensures that each point can be inserted 
inside an existing grid, and permits the Delaunay 
triangulation to be constructed in a simple and 
elegant manner. 

The data structure used to hold the triangulation 
is shown in Fig. 4. The vertices for each triangle are 
listed anticlockwise and stored in a single column 
of a two-dimensional array V. Similarly, the list of 
adjacent triangles are held in the two-dimensional 

triangle triangle 

Fig. 4. Data structure for Delaunay triangulation. 
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array T, with a zero denoting that the side lies on a 
boundary. 

In the first stage of step 5, it is necessary to 
locate a triangle which encloses the new point P. The 
search is initiated in the triangle which was formed 
last and uses Lawson’s algorithm to march from 
one triangle to the next in the general direction of P. 
This ingenious strategy removes the need to search 
through the entire triangdlation, and is shown in 
Fig. 5. Once the enclosing triangle is found, it is 
deleted and the new point is inserted into the grid by 
connecting P to each of its vertices. This process gives 
a net gain in the total number of triangles of two and 
is illustrated in Fig. 6. Since we start out with a single 
supertriangle, and each new point creates two new 
triangles, the final number of triangles is equal to 
2Nfl. 

In steps 6 and 7, the triangulation is restored to 
a Delaunay triangulation using Lawson’s swapping 
algorithm. After the insertion of P, all the triangles 
which are now opposite P are placed on a stack, as 
shown in Fig. 6. Each triangle is then removed from 
the stack, one at a time, and a check is made to see 
if P lies inside its circumcircle. If this is the case, then 
the two triangles which share the edge opposite P 
violate the Delaunay condition and form a convex 
quadrilateral with the diagonal drawn in the wrong 
direction. To satisfy the Delaunay constraint that 
each triangle has an empty circumcircle, the diagonal 
of the quadrilateral is simply swapped, and any 
triangles which are now opposite P are placed on the 
stack. This process is repeated until the stack is 
empty, which signals that the triangulation has 
been restored to a Delaunay triangulation, and is 
illustrated in Fig. 7. When implementing Lawson’s 
swapping algorithm, it is essential that the circum- 
circle test is computed efficiently and accurately, as 
this step accounts for a significant proportion of the 
total CPU time and determines the validity of the 
triangulation. A fast and numerically robust method 
for performing this test has been given by Cline and 
Renka [S]. Consider the two adjacent triangles shown 

triangle enclosing 

search started from last formed triangle 

Fig. 5. Lawson’s search. 

insert P 

triangles I-1 , TX , Ts placed on stack 

Fig. 6. Insertion of new point in triangulation. 

in Fig. 8. The Delaunay constraint stipulates that the 
diagonal V,-V, is replaced by the diagonal P-V, if P 
lies inside the circumcircle for the triangle V1-V2-V,. 
From Fig. 8 we see that P lies on the circumcircle 
when 2a + 28 = 2n and, thus, a swap must be per- 
formed when a + /I > IL. Since a + fi < 2n, the swap 
condition also implies that 

sin(a + /.I) = cos a sin fl + sin a cos /I < 0 

Stacked triangles are TV , T-J , T3 

Check each triangle on 
the stack to see if P is 
inside its circumcircle 

Remove triangle TJ 
from stack 

Point P is inside circum- 
circle for triangle T3 

Swap diagonal opposite P 

Repeat above steps until 
stack is empty 

Fig. 7. Lawson’s swapping algorithm. 
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(ii) If cos a 2 0 and cos b > 0 then set the swap 
test to ‘false’ and exit. 

(iii) If cos a < 0 and cos h < 0 then set the swap 
test to ‘true’ and exit. 

(iv) Set sin ab = (x,3y23 - x,,y,,) c0S b + (x,,y,, 
- X,,Y*,) cos a. 

(v) If sin ab < 0 then set the swap test to ‘true’ and 
exit. 

(vi) Set the swap test to ‘false’. 

cr+b=n 

Fig. 8. Geometry for circumcircle test. 

Although this revised procedure introduces a number 
of additional comparisons, it has the great advantage 
of being numerically stable. 

which may also be written as 
The expected run time performance of the triangu- 

lation algorithm may be determined by analysing 

I 

(43x23 +Y,3Y,,)(x*PYylP- XIPY,,) + b,3Y*3 - X23Y,,)(X2PX,P + YZPYIP) < o 

[(X:3+Y:3)(X:3+Y:3)(X:P+Y:P)(X:P+Y:P)l’r2 
where 

x13 = XI -x3, YI3 =Yl -Y3, 

x23=x2-x3, Y23 =Y2 -Y3, 

XIP = XI - XP, YIP = Yl -YP, 

x2p = x2 - xp, Y,P=Y,-YP. 

Multiplying through by the denominator and 
rearranging, this test may be expressed in the more 
efficient form 

(x,3x23 + Y,3Y23)tx2PYlP - xIPY2P) 

< (x23Y,3 - x,3Y23)(x2Px,P +Y,PY,P) tl) 

which requires only ten multiplications, two 
additions and two subtractions. Although the circum- 
circle test of eqn (1) is very fast, the effects of round- 
off error may cause it to become inaccurate when 
sin(cc + 8) approaches zero. This condition arises 
when: 

(i) z +/I is near 7r, 
(ii) x and b are both near 0, 

(iii) LX and /l are both near II, 

and has been discussed at length in [S]. The first case 
indicates that P lies very close to, or precisely on, 
the circumcircle for the triangle V,-I’,--V, and may 
be safely ignored. The second and third cases, on the 
other hand, occur when the vertices of the quadri- 
lateral V,-P-V,-V, are very nearly collinear and 
must be dealt with to preserve the correctness of the 
triangulation. In particular, it is necessary to always 
perform a swap when CI and /I are both near rr. In light 
of these considerations, Cline and Renka [S] sug- 
gested that the circumcircle test of eqn (1) should be 
modified as follows: 

(i) Set cos u = xl3x23 + Yl3Y23 and cos b = 

-X?PXlP + Y2PYlP. 

the complexity of each of its steps. As discussed 
previously, the bin sort in step 2 may be implemented 
so that it requires O(N) operations. Even for large 
problems, only a small fraction of the total CPU time 
is spent in this phase and the bulk of the compu- 
tational work is done by the searching and swapping 
procedure of steps 5 and 7. To estimate the expected 
behaviour of step 5, it is reasonable to assume that 
the points are distributed in the x-y plane so that 
each bin contains roughly O(N”‘) points. For this 
case, 0(N’j4) triangles need to be searched to find the 
triangle which encloses the newly introduced point. 
Since this step is repeated N times, it gives rise to 
an overall operation count of 0(N5j4). Somewhat 
surprisingly, the swapping scheme in step 7 typically 
requires only a constant number of operations. 
Indeed, this step has a total operation count of O(N), 
since numerical experiments suggest that the intro- 
duction of each new point requires an average of 
about three swaps to restore the Delaunay structure. 
Interestingly, the observed run times’ for Sloan’s 
scheme usually grow at a rate which is substantially 
less than the theoretical prediction of 0(N5’4). This 
apparent discrepancy is due to the fact that the time 
required for one iteration of the search procedure is 
much less than the time required for one iteration of 
the swapping procedure. Even for large values of N, 
the average number of searches is small and most of 
the time is spent in the swapping phase. Unless N is 
indeed huge, the average run time of the algorithm is 
very nearly O(N). 

ALGORITHM FOR CONSTRUCTING A CONSTRAINED 
DELAUNAY TRIANGULATION 

The Delaunay triangulation discussed in the 
previous section is unconstrained and does not 
necessarily include all of the prescribed edge con- 
straints. In finite element and contouring appli- 
cations, these edge constraints typically correspond 
to domain boundaries or natural discontinuities 
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(such as an interface between two different types of 
material). The algorithm for modifying the existing 
Delaunay triangulation, so that certain edges are 
forced to be present, is as follows: 

1. (Loop over each constrained edge.) Let each 
constrained edge be defined by the vertices Vi and Vj. 
For each of these edges, do steps 2-4. 

2. (Find intersecting edges.) If the constrained 
edge V,-Vj is already present in the triangulation, 
then go to step 1. Else, search the triangulation and 
store all of the edges that cross Vi-Vj. 

3. (Remove intersecting edges.) While some edges 
still cross the constrained edge Vi-V,, do steps 3.1 
and 3.2. 

3.1. Remove an edge from the list of edges that 
intersect Vi-V,. Let this edge be defined by 
the vertices Vk and V,. 

3.2. If the two triangles that share the edge 
V,-V, do not form a quadrilateral which is 
strictly convex, then place Vk-V, back on 
the list of intersecting edges and go step 3.1. 
Else, swap the diagonal of this strictly 
convex quadrilateral so that two new tri- 
angles are substituted for two old triangles. 
Let the new diagonal be defined by the 
vertices V,,, and V,. If V,,,-V,, still intersects 
the constrained edge Vi-c, then place it on 
the list of intersecting edges. If V,-V, does 
not intersect Vi-Vj, then place V,,-V, on a 
list of newly created edges. 

4. (Restore Delaunay triangulation.) Repeat steps 
4.1-4.3 until no further swaps take place. 

4.1. Loop over each edge in the list of newly 
created edges. 

4.2. Let the newly created edge be defined by 
the vertices Vk and V,. If the edge V,-V, is 
equal to the constrained edge Vi-Vj, then 
skip to step 4.1. 

4.3. If the two triangles that share the 
edge V,-V, do not satisfy the Delaunay 
criterion, so that a vertex of one of the 
triangles is inside the circumcircle of the 
other triangle, then these triangles form a 
quadrilateral with the diagonal drawn in 
the wrong direction. In this case, the edge 
Vk-V, is swapped with the other diagonal 
(say) V,,,-V,, thus substituting two new 
triangles for two new triangles, and V,-V, 
is replaced by V,,,-V, in the list of newly 
created edges. 

5. (Remove superfluous triangles.) Remove all 
triangles that contain a supertriangle vertex or lie 
outside the domain boundary. 

This algorithm is similar to the one used in the 
code in [5], although our data structure and method 
of implementation are somewhat different. The 
scheme is essentially comprised of two distinct 
phases. In the first phase, each constrained edge is 
forced to be present in the triangulation by using 

a triangle swapping procedure to remove all of 
the intersecting edges. The swapping algorithm is 
designed to test all possible arrangements and will 
always find a triangulation which includes the con- 
strained edge. In the second phase, each new edge 
that is formed by the triangle swapping process, 
except the constrained edge, is ‘optimized’ so that 
it satisfies the Delaunay condition. Subject to the 
restrictions imposed by the edge constraints, which 
may force some triangles to have non-empty circum- 
circles, the final grid is thus a Delaunay triangulation. 

A rigorous complexity analysis of the scheme is 
difficult because the number of operations required 
depends inevitably on the problem at hand. We may, 
however, make some preliminary remarks which are 
based on empirical observations. 

In step 2, it is necessary to examine an average 
of about three edges to determine whether the pre- 
scribed edge is present in the triangulation. To make 
this step efficient, it is convenient to hold a list 
of triangle numbers for each vertex, so that we can 
readily locate a triangle to which a given vertex 
belongs. This vector must be of length N + 3, and 
provides a starting triangle to begin the search for the 
edges which cross the constrained edge V,-Vj. To find 
all the intersections, we circle the vertex Vi until the 
first crossing is detected and then march from one 
triangle to the next in the general direction of the 
vertex V,. This procedure, shown in Fig. 9, is efficient 
since each intersecting edge needs to be inspected only 
once to form the list of crossings. 

The iterative algorithm of step 3, which rearranges 
the grid to incorporate the edge K-V,, hinges on the 
fact that all possible triangulations for a set of points 
can be found by systematically swapping the diagonal 
in each convex quadrilateral formed by a pair of 
triangles. For the case of a constrained edge which is 
crossed by n edges, it is clear that at least n swaps 
must be performed. Empirical evidence suggests that 
one iteration of this step typically reduces the number 
of crossings by a factor of two and, hence, it is usual 
to observe that roughly O(log,n) iterations in total 
are required. The algorithm for removing all of the 
edges which intersect a constrained edge is illustrated 
in Fig. 10. 

constrained edge q - 6 

search started in any 
triangle containing V, 

intersecting edges are VI - V2 , V2 - V3 , v3 - v4 

Fig. 9. Detecting constrained edge intersections. 
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constrained edge V, - v 

VI-v;-V2-V3 isconvex 
replace VI- Vz with v-V3 

V3-i5-v2-v4 isconvex 
replace Vz- V3 with V;: - V4 

c; d 
V3 - vi - V4 - I$ is COIIWX 

replace V3- V4 with F- q 

4 
v, 

v, .’ 
,,*’ 

@ 

c; 
(,,’ 

d 
,.,’ 

Q-5 isnowin 
___ . . . . . .*._s. v, triangulation 

newly created edges are 
&k$,Q-v~,f+v~ 

Fig. 10. Removing constrained edge intersections. 

The optimization iterations of step 4, shown in 
Fig. 11, serve to restore the Delaunay condition for 
each new edge created in step 3, except for the 
constrained edge, and ensure that the overall triangu- 
lation is of good quality. For most practical problems 
this phase requires only two or three sweeps through 
the list of newly created edges and, thus, typically 
gives rise to an operation count of O(n). 

The task of clipping unwanted triangles from 
the grid, which is the final stage in the triangulation 
scheme, may be implemented so that only O(N) 
operations are required. If the constrained edges 
define domain boundaries, we first trace each bound- 
ary and mark every triangle that needs to be deleted. 
These marked triangles are then removed in a single 
pass and it is unnecessary to inspect every triangle in 
the grid. 

APPLICATIONS 

The constrained triangulation scheme described 
in the previous sections has been impIemented in 
standard FORTRAN 77. For an arbitrary triangu- 
lation with N points and N, constrained edges, the 
code requires 17N + 2N, + 18 words of memory, 
including the storage for holding the coordinates, and 
has been used successfully on data sets with several 
hundred thousand points. After computing the tri- 
angulation, each triangle that does not share a con- 
strained edge is checked to ensure that it satisfies the 
Delaunay condition by having an empty circumcircle. 
In addition, every triangle must have a positive area 
and the triangulation as a whole must obey Euler’s 

formula for planar graphs. For a multiply connected 
domain with H ‘holes’, the latter condition may be 
written as N + N, + H - N, = 1, where N, and N, 
denote, respectively, the total number of triangles and 
edges in the grid. Numerous other checks, such as a 
test for coincident points, are also included to verify 
the integrity of triangulation. 

To give some indication of the efficiency of the 
algorithm, we consider a set of N points distributed 
randomly over a unit square. For various values 
of N, ranging from 100 to 20,000, we compute both 
a simple Delaunay triangulation and a constrained 
Delaunay triangulation. The latter cases are obtained 
from the former cases merely by imposing N/l0 edge 
constraints, which are selected at random, on the 
data set. Since they often span across the domain and 
give rise to a large number of intersections, these 
constrained edges pose a severe test for the scheme. 
In most practical applications, particularly in finite 
element analysis, it is usual for each constrained edge 
to be intersected by only a few edges. 

Figures 12 and 13 illustrate, respectively, the un- 
constrained and constrained Delaunay triangulations 
for the case of 100 points. In Fig. 13, the constrained 
edges are indicated by boid lines. The results for the 
various test cases are shown in Table 2. These timing 
statistics were obtained using the internal clock of the 
machine, and include the time required to check both 
the data and the triangulation. 

When the bin sort is used, the growth in the CPU 
time for the unconstrained t~angulation scheme is 
very nearly linear with N. Indeed, averaging the 
results for the values of N considered, the observed 

newly created edges are 
l+~,F+V3,~-V4 

replace vi- ~3 with 

I$ in circumcircle 

replace 6 - V4 with 

all edges now satisfy the 
Delaunay condition subject 
to the edge constraint im- 

V4 posedby 6-6 

Fig. Il. Restoring constrained Delaunay condition. 
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Fig. 12. Delaunay triangulation for 100 points. 

generating Delaunay triangulations 

run times are approximately 0(N’.06). For the con- 

strained cases, with N/10 arbitrary edge constraints, 

the observed growth rate is slightly greater than linear 
and has an average value of O(N’.‘*). 

Without the bin sort, the observed run times for 
the unconstrained and constrained schemes may be 
respectively approximated as 0(N1.2g) and O(N’.*‘). 
When the points are distributed over the domain in 
a reasonably uniform manner, the importance of the 
bin sorting procedure increases with increasing N. 
For an N value of 1000, the bin sort reduces the run 
time of the algorithm by roughly 20%. This reduction 
increases to around 50% once N reaches 20,000. 

relative to that of the corresponding unconstrained 
case, by a factor of around 2. The time required to 
incorporate each constrained edge is, as discussed 
previously, dependent on how many times it is 
crossed by other edges in the initial triangulation. 
Since the edge constraints have been generated 
randomly and often intersect a lot of edges in the 
unconstrained triangulation, these test cases are 
especially severe and unlikely to occur in practice. 
In the majority of applications encountered by the 
author, the overhead associated with incorpor- 
ating realistic edge constraints is typically less than 
10%. 

For our model problem, the imposition of the As a final example, the constrained Delaunay 
constrained edges typically increases the CPU time, scheme was used to generate the illustrative finite 

Fig. 13. Delaunay triangulation for 100 points 
random edge constraints. 

with 10 

Table 2. Timing statistics for triangulation of points distributed randomly over a 
unit square 

Unconstrained Delaunay Constrained Delaunay 
triangulation triangulation 

N CPU time a CPU time a 

100 0.10 
0.91 

1000 0.99 1.42 
1.29 1.77 

5ooo 5.82 
10.41 

10,000 12.28 
26.55 

20,000 25.74 43.10 
68.10 86.69 

1.00 
1.16 

1.10 
1.30 

1.08 1.16 
1.35 1.33 

1.07 
1.36 

0.11 
0.12 

9.38 
14.29 

20.98 
35.94 

1.11 
1.17 

1.17 
1.30 

1.04 
1.27 

Notes: 
1. All times in CPU seconds for Apollo DN3500 (25 MHz Motorola 68030 with 

Weitek floating point accelerator). 
2. Values for the exponent o obtained by assuming CPU times are O(N”). 
3. Constrained Delaunay triangulations have N/l0 edges prescribed randomly. 
4. Bold face entries are for runs without the bin sort. 
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