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Equivalent stress approach in modelling unsaturated soils

W. T. Sotowski*" and S. W. Sloan

Centre for Geotechnical and Materials Modelling, The University of Newcastle, NSW 2308, Australia

SUMMARY

This article presents an equivalent stress approach that can be used in many elastoplastic constitutive models for
unsaturated soils. The use of the equivalent stress leads to a modified yield locus that is independent of the
suction. In addition, the equivalent stress becomes the major stress variable, with suction required only as an
additional variable in calculations. The model on the basis of equivalent stress predicts exactly the same soil
behaviour, with the sole difference being the use of equivalent stress instead of original stress variables. This
article also presents the equivalent stress formulations of several constitutive models for unsaturated soils,
including the Barcelona Basic Model. The predictions from these models remain unchanged, with the only
difference being in their implementation. Finally, the equivalent stress approach and the net stress approach are
compared for the Barcelona Basic Model. Copyright © 2011 John Wiley & Sons, Ltd.
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1. CHALLENGES IN THE CONSTITUTIVE MODELLING OF UNSATURATED SOILS

In saturated soils, it is assumed that all the pores between the soil grains are filled with porous fluid and no
gas phase is present. Such an assumption is often valid, especially for soils below the water table. However,
soils above the water table are frequently only partially saturated, which means that the pores between soil
grains are filled with not only porous fluid but also some air bubbles or even a continuous gas phase. In such
soil, commonly known as unsaturated soil, additional effects due to unsaturation are present, mostly
because of capillary effects in the pore fluid. They exhibit a suction, s, defined as the difference between
pore air and pore water pressure, which replaces the pore water pressure of saturated soils. Generally, for
aggregated soils, the presence and the increase of suction lead to stiffer and more shear-resistant soil;
however, when suction is reduced, this additional stiffness is also lowered correspondingly.

One of the most important features of unsaturated soils behaviour is the occurrence of a collapse.
For a collapse to occur, the soil with high suction must be loaded with a mean net stress beyond the
plastic limit of the saturated soil. Such soil will exhibit much lower deformation during loading as
compared with the saturated soil because of the effects of unsaturation. Once the unsaturated soil is
wetted (without load reduction), it may collapse; therefore, the volume of the soil must be reduced
although the external load is constant. Finally, in a fully saturated state, the specific volume of the soil
would correspond to that of the saturated soil. The ability to model collapse reliably is required for a
constitutive model for unsaturated soils.

To model collapse, constitutive models most often assume that the yield locus enlarges when the
suction is increased and contracts when the suction is reduced. In contrast to saturated soils, this
change in the size of the yield locus is not associated with any plastic deformations; the plastic
deformations occur only when the stress state fulfils the suction-dependent yield locus equation.
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1668 W. T. SOLOWSKI AND S. W. SLOAN

The models for unsaturated soils use either a traditional net stress as the stress variable or a
combination of net stress and suction as the new stress variable. This choice has been the subject of
intense research, including contributions by Bishop [1], Jennings and Burland [2], Houlsby [3], Hutter
et al. [4], Li [5] and Khalili et al. [6]. Additional information on the subject may be found in a recent
review article by Laloui and Nuth [7].

Several constitutive models for unsaturated soils exist. Elastoplastic constitutive models on the
basis of the net stress approach have been proposed by Alonso ef al. [8], Cui and Delage [9], Sun
et al. [10], Sheng et al. [11] and Kohler and Hofstetter [12], among others, whereas models with
complex stress variables have been given by Bolzon ef al. [13], Jommi [14], Wheeler er al. [15],
Gallipoli et al. [16], Russel and Khalili [17] and Romero and Jommi [18].

The article shows that many unsaturated soil models can be reformulated into equivalent stress
models. The reformulated models predict exactly the same soil behaviour as the original models;
the only difference is that their yield loci are independent of suction and depend on equivalent
stresses only.

2. INTRODUCING EQUIVALENT STRESSES INTO A CONSTITUTIVE MODEL

The yield loci of constitutive models can often be normalised, that is, divided by a factor to
reduce them to a standard size. These normalised yield loci have better numerical properties for
the implementation of finite element codes (e.g. see [19,20]). If such a normalisation is
possible for a constitutive model for unsaturated soils, one can normalise the yield locus to the
corresponding yield locus for the saturated soil instead of normalising it to a constant size.
This normalisation would effectively mean that the new normalised yield locus will not depend
on suction, that is, suction changes will not lead to changes in the yield locus size. Assuming
that the hardening parameter for saturated conditions is the maximum mean stress, the
normalisation of the yield locus can be generally achieved by multiplying the original yield
locus by a factor composed of the saturated hardening parameter divided by the total length of
the yield locus.

The second step is to choose the equivalent stress variables such that the yield locus will depend
solely on them. This, again, can usually be achieved by multiplying the original stress variables by a
factor that is similar to that applied to the yield locus. To complete the formulation, the original stress
variables must be replaced by the equivalent stresses in the model equations. As an example, the
complete formulation of the Barcelona Basic Model [8] in equivalent stresses is given below, as well
as the partial formulations of the constitutive models proposed by Romero and Jommi [18] and Kohler
and Hofstetter [12]. The equivalent stress formulation is relatively simple for most of the cases
presented, but for some constitutive models, it may be computationally difficult or even not
possible (e.g. when the yield surface is a combination of yield surfaces, a single equivalent stress
cannot describe yielding in a form that is independent of suction, unless it is defined separately for
each yield surface).

2.1. Normalisation of the yield locus for the Barcelona Basic Model

In the case of the Barcelona Basic Model, the original yield locus reads

Feem = ¢° = M*(p +ps)(po —p) =0 ()
where
(P [4(0)=]/[2(s)—x] ) o
Py =k, n=r(2) LMY= -ne Pt ] @
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and A(0), x, M, p“, k, r and f§ are the model parameters and pj; is the hardening variable (see [8]). The
yield locus can be scaled by dividing it by a factor that is dependent on the hardening parameter p;; and
the size of the yield locus py+p;

2
(pO tps) (3)
Po
to obtain the normalised yield locus
£\ 2 _
Famu — ( ap; > M (p+ps) (Po—p) _, @
Po +Ps Po+Ps po+tps

Expressing Equation (4) in terms of the equivalent stresses p’ and ¢’

P04 , Po(p +p:
= P'BBM _plptpe) &)
Po + Ds Po +Ps

the final yield locus equation is obtained as

Femn = @'am” — M Papm (P) — P'eam) = 0 (6)

Note that when the full stress tensor is required for calculations, the equivalent stress components
become

po 1o pwg
— 0+ 30
Po+ ps 3 " po+ps

)

0'jBBM =
The normalised yield locus is independent of the suction, and its size depends only on the hardening
parameter pj;.

2.2.. Barcelona Basic Model formulation with equivalent stresses

Net stresses can be recovered from equivalent stresses as

. Potps . potps
4 = 4BBM " P=PBBM %  — Ds ®)
Po Po

Then, all the equations of the original model need to have the net stresses replaced in line with
Equation (8). The specific volume is calculated as

v = N(s) — A(s) In (’I’)—O> +ixcln (%) = N(s) = 4(s) In (1;,—0) +xln ( p/BBM(popipi) - pwé)

)
with the volumetric strain increment following as
v
Agy = In— (10)
Vo
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The increment of the volumetric plastic strain is the same as in the original formulation of the model
because it depends on the change of the hardening parameter only. The change of volume due to
suction and the suction yield locus also remain unaffected. The flow rule is

OF, OF, OpPBEM OF,  O0qpm
@ _ op 1 Opgem  Op Oqgem  Op an
deg N o OF, o OF, _Opsem OF, _9q'spm
9q dpsem  Oq Jgem  Oq

where « is

 MM-9M-3) 1

o= 12
S6-M)  T—x/i0) (12)
The relevant differentials are now
OoF, 5 OoF,
— M*(2p _ p — 2y
O sent ( P BBM Po) Oq'smnt 4 BBM
a ’ * a ’
PeeM _ _ Po PBBM _ 0 (13)
dp po+ps dq
9q'gpm -0 9q'gpm _ 12
op 99 po+ps
Thus, the ratio of the plastic strains is
2 ’ * p* ’ *
de) lM (27'seM — P5) otn le (2P'seM — 1) (14)
deff A - 2q'
&g & 24'sBM 7515, o 9BBM

The infinitesimal change of volumetric elastic strain is computed from two parts, which stem from
the mean net stress change and the suction change:

K dp
vp'

K ds
VS =+ Pat

de¢! = de® =

v

15)

Under the usual assumption of constant specific volume in the increment, the elastic strain
increment can be integrated as

A . A
ptop Adges =2 [ p ST 25T P (16)

p v S+ Pat

K
Ade?! = — In
v
The previous equation can be written in terms of equivalent stress as

, *
Adest = lnp BBM final (p 0 finat TP s,final) PP final
%
v

a7
P'BBM (po +ps) — PP,
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where the subscript final refers to values at the end of the increment. The elastic shear strain increment
can be calculated as

1 1

def! = 3Gda, Mgl = 3GAq (18)
which, in terms of equivalent stresses, can be written as
el 1G , /
Aey = gp_z; (q BBM, final (po,ﬁnal +ps,final) ~ 4BBM (po +ps>) (19)

Equations (17) and (19) for the elastic strain increment due to changes in the net stress are probably
less convenient to use in the form of equivalent stress. This is, to some degree, because they were
created to be simple and intuitive to use in the net stress space.

To implement the model in a finite element code, an elastoplastic tangent matrix is also
required. Here, the matrix will be similar to that of the Barcelona Basic Model (e.g. see [20]),
except that the differentials of the yield locus and potential surface need to be computed in terms
of the equivalent stresses.

2.3. Normalisation of the yield locus for the Romero and Jommi model

The model proposed by Romero and Jommi [18] for unsaturated soils extends the work of Gallipoli
et al. [16] and allows for an anisotropic response by incorporating the ideas of Dafalias [21]. The yield
locus equation reads

Foo = (q—Mp)’ — (M> = M2)p(po—p) =0 (20)
where
Bo =1+ b (20750~ 1))] @
dM, = c|del| (q/p — M) (22)
N u,=0
p=p—u,)+Ss =p+Ss (23)

and by, b,, ¢, & and M are the model parameters, p; is a hardening parameter for saturated conditions, p
is the mean skeleton stress, S, denotes the degree of saturation, s denotes suction and dg€1 is the
increment of plastic volumetric strain. After the division of the yield locus equation by the factor

AN 2
Do

the normalised yield locus becomes

A 2 A A

* _M * * . *

Fan — <M> (a2 P <p0 _PAPO) . 25)
Po Po Po

Introducing the equivalent stresses

Y . B /).
qdRry) = PRI = (26)
Po Do
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the normalized yield locus can be written as

Frin = (qry — Macp/RJ)z - (M2 - Mi)P’RJ (PS —P'RJ) =0 (27

with

M, = C‘dglv) (qRi/PR1 — EM,,) (28)
because the ratio of the equivalent stresses is the same as that of the original stresses p and g. The
resulting yield locus does not depend on suction, and its equation is the same as for saturated soils,
although the stresses p and g are replaced by the equivalent stresses. Should the full stress tensor be
needed, the equivalent stress components can be computed as

(=)

ajj (29)

O",'j:

'U>|'U
S

Finally, for use in the constitutive model equations, net stresses can be recovered from equivalent
stresses using the following relations:

g="8 p="2N (30)
Po Po

The remaining equations may be obtained in a similar way to that shown in the Barcelona Basic
Model by substituting p and ¢ with the equivalent stresses pg; and g’y
The specific volume computed as

A

y=N(0) — 220 — e 2 G1)
pc pO
when described in the equivalent stresses reads
v =N(0) — 220 — 1 POPRI 32)
The elastic equations

Aq =3GA& P, = pett (33)

after introducing the constitutive stresses become

, Po : e

Agry = SGP_E A&l PRrypew = Pri¢ (34)

As the hardening rule is dependent on the hardening parameter p; only, it remains unaffected

*

VDo

dpg:;\._K

de? (35)

v
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The plastic strain ratio can be obtained as

deP OFgin OFRm aP'ARJ OFRmm &I;RJ
déy _ 9 _ 9w O " Jqw Op 36)
dgg OFgjy OFgy, OPry | OFgin 9q'rg
9q Oy Oq Oqry Oq
where
Ip'sBM _ P Ip'sBM —0
9qBEM _ 0 9qBBM _ PO
op 9q Do

Further details on the stress integration algorithms suitable for the model may be found in Cattaneo
et al. [22].

2.4. Normalisation of the yield locus for the model proposed by Kohler and Hofstetter

This example shows that the normalised yield locus is also possible for the unsaturated cap model of
Kohler and Hofstetter [12], although it is more complex than the other cases. This is because the
evolution of the cap model surface with suction increase is not homothetic, that is, the resulting surface
is not a simple scaling of the initial surface but rather involves the individual scaling of each of the
surfaces. The yield loci (the shear failure surface for the hardening parameter /' <k(s) and the cap for
I > x(s)) are

" 1 — wcos3d
Fas = Lo~ (1)~ Fs) = (1252

-n
. ) Is||—oc—0I'  —ks=0  (38)

R
(39)
The latter equation may be written in the more usual form of an ellipse equation:
LS _ [, D=k N “0)
o+ Ox(s) + ks R(o + O (s) + ks)
The same equation for the saturated case is
Lol [, (_fi=x(0) \? )
o + 0k(0) R(o.+ 0x(0))
Comparing these two forms, it is clear that the right choice of equivalent stresses is
oy(o+ 0x(s) + ks) 1 (o0 + Oxc(s) + ks)
i = —=0;i|K(0) ——————— 42
Ty o + 0x(0) 30 MOy T (“42)
which leads to the equivalent stresses
, (I’; — x(0)) (o + Orc(s) + ks)
1 = 43
LK o+ 0x(0) +x(s) @3)
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sl + x(s) + ks)

' 44
||SKH|| O(—|—9K(O) 44)
and the yield locus equation
LOswull _ [, (Tixn = x(0) ’ 43)
o+ 0x(0) R(o+ 0x(0))

Note that the calculation of Lode’s angle in L(1) may be different should the equivalent stresses be
used.

Unfortunately, the other part of the yield locus defined by Equation (38) requires another set of
equivalent stresses, which are

oy =0y~ 10, (’g) (46)

This leads to
Ih=1— % 47)
[Is'[[ = [[s]] (48)

Accordingly, the equations describing the elastic behaviour will be different depending on which
yield locus (and set of equivalent stresses) is active. The transition between the two surfaces happens
when the original stress I is equal to x(s). This means that the equations change when I is reducing
within the cap region of the yield locus and

[r(s) — x(0)] (o + Oxc(s) + ks)
o+ 0k(0)

Iixn = + K (s) (49)

or when

In = «(s) — r) (50)

and I is increasing in the conical part of yield locus. As a result, two models (with different sets of
equivalent stress—strain relationships) must be considered. This will result in a cumbersome algorithm;
therefore, the equivalent stress approach is not recommended for the model proposed by Kohler and
Hofstetter [12].

3. VALIDATION AND ASSESSMENT OF THE EQUIVALENT STRESS APPROACH

It has been shown that the equivalent stress approach is feasible for several constitutive models for
unsaturated soils. The clear advantage of the equivalent stress approach is that the yield locus is
independent of the suction. However, the equivalent stress does not have an obvious physical
interpretation, and its form is dependent on the constitutive model adopted. To investigate more
closely the behaviour of a constitutive formulation using the equivalent stress, the Barcelona Basic
Model is now studied. Three tests are considered: the volumetric collapse test with no deviator stress

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2012; 36:1667-1681
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and the two shearing and wetting tests. In these tests, the original net stress formulation and the
equivalent stress formulation are used. The Barcelona Basic Model parameters are shown in Table I,
and the stresses at the given points of all the tests are given in Table II.

The three tests considered are as follows: (i) the isotropic compression test; (ii) the standard shear
test; (iii) and the pure shear test. The isotropic compression test (see Figure 1) consists of saturated
loading (A-B), drying (B—C), loading (C-D), unloading (D-E), wetting (E-F) and loading (F-G). The
results of the test in terms of the net stress and the equivalent stress formulations are given in Figures 2
and 3, respectively.

The shearing test (Figures 4 and 5) consists of loading (A-B), drying (B—C), shearing on a standard
triaxial path (C-D), removing the deviator stress (D-E), wetting (E-F) and loading (F-G). The results
of the test in terms of the net stress and the equivalent stress formulations are given in Figures 6 and 7,
respectively.

The pure shear test (Figures 8 and 9) consists of loading (A-B), drying (B—C), loading (C-D),
shearing with deviator stress increment only (D-E) and finally wetting (E-F). The results of the test are
given in Figures 10-13.

From the tests, it is clear that the occurrence of yield depends only on the equivalent stress. This is
especially evident in the case of isotropic compression because no shear stress is present. However, the
other tests do confirm that this is indeed the case. As such, the model plastic behaviour is explicitly
dependent not on the suction but rather on the equivalent stresses, which are, in turn, dependent on
model parameters, original stress variables and suction.

The normal compression line is maintained and is never exceeded when the equivalent stress
approach is used. Such behaviour is similar to that of saturated soils. However, with the net stress
approach and yield locus expansion (without any plastic work being done), the normal compression
line can be crossed (e.g. compare Figure 2 with Figure 3).

Table 1. Barcelona Basic Model Parameters.

NO) a  G(MPa)  p. (kPa) K 20)  pu(kPa) Kk Ke B (kPa™") r

2.8 0.5 20 1 0.02 0.2 100 0.6 0.012 0.01 0.75

Table II. Stress state and hardening parameter values at specified points.

Point  p (kPa) ¢ (kPa) s (kPa) p' (kPa) ¢ (kPa)  p;(kPa)

Initial state A 10 0 0 10 0 15
Test 1: volumetric collapse B 20 0 0 20 0 20
C 20 0 200 16.3 0 20
D 80 0 200 27.9 0 279
E 60 0 200 25.1 0 279
F 60 0 0 60 0 60
G 95 0 0 95 0 95
Test 2: standard triaxial shear B 20 0 0 20 0 20
C 20 0 200 16.3 0 20
D 60 120 200 32.8 21.9 91.2
E 60 0 200 32.8 0 91.2
F 60 0 0 60 0 91.2
G 100 0 0 100 0 100
Test 3: pure shear test B 40 0 0 40 0 40
C 40 0 200 25.8 0 40
D 40 100 200 29.0 18.1 74.3
E 40 0 200 29.0 0 74.3
F 40 0 0 40 0 74.3
G 90 0 0 90 0 90
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2012; 36:1667-1681
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Figure 1. Mean net stress and suction values during isotropic compression test.
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Figure 2. Specific volume versus mean net stress during isotropic compression test.
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Figure 3. Specific volume versus equivalent mean stress during isotropic compression test.
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Figure 4. Mean net stress and suction values during standard shear test.
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Figure 5. Mean net stress and deviator stress values during standard shear test.
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Figure 6. Variation of specific volume and mean net stress during standard shear test.
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Figure 7. Variation of specific volume and equivalent mean stress during standard shear test.
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Figure 8. Mean net stress and suction values in pure shear test.
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Figure 9. Mean net stress and deviator stress values in pure shear test.
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Figure 10. Variation of specific volume and mean net stress in pure shear test.
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Figure 11. Variation of specific volume and deviator stress in pure shear test.
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Figure 12. Variation of specific volume and mean equivalent stress in pure shear test.
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Figure 13. Variation of specific volume and deviator equivalent stress in pure shear test.

It is interesting to note that the equivalent stress generally decreases with increasing suction. This
leads to sophisticated equations for predicting the elastic behaviour of the material. It also shows that
the equivalent stress is very different to the microstructural stress, which generally increases with
increasing suction.

4. CONCLUDING REMARKS

The article presents an equivalent stress framework that may be used for unifying constitutive models for
unsaturated soils. It is shown that several important models may be formulated in terms of equivalent
stress. However, the equivalent stress formulations for models with yield surfaces that are nonhomothetic
as the suction increases (such as the Kohler and Hofstetter model) are more complex compared with those
models that are homothetic. The equivalent stress concept can be introduced into models that are based on
either net stress or more complex stress variables (such as the Bishop stress).

The introduction of the equivalent stress leads to a yield locus that is independent of suction. As
such, the yield locus evolution is always connected to plastic work and resembles that of saturated
soils. Nonetheless, suction may be still present in the remaining model equations and influence the soil
behaviour.

The general feature of the equivalent stress is that it reduces with the application of a suction
increment. This is very different to the microstructural stress in soils that—at least at relatively high
degrees of saturation—increases with suction increase. It also implies that the equivalent stress does
not have any physical interpretation but is rather a mathematical construct dependent on the given
model, the stress state and the suction. It also may be interpreted as a coordinate transformation
approach where, at the cost of increased stress variable complexity, typical yield behaviour is obtained.

The models considered are not simpler when the equivalent stress is introduced. However, there
are some possible gains due to the use of a standard plasticity framework (i.e. the yield locus now
depends on a single variable rather than both the hardening parameter and the suction). Therefore,
in some cases, an equivalent stress formulation may be numerically beneficial. More importantly,
it allows for a new interpretation and unification of elastoplastic models for unsaturated soils
that—when described in terms of equivalent stresses—become very similar to each other and to
the models for saturated soils.
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