NUMERICAL SIMULATION OF SOFT GROUND IMPROVED WITH CEMENT

D. S. Liyanapathirana, M. D. Liu and J. P. Carter

1 School of Engineering, University of Western Sydney.
2 School of Civil and Environmental Engineering, University of New South Wales.
3 Faculty of Engineering and Built Environment, University of Newcastle.

ABSTRACT

This paper examines, using a numerical model based on the finite element method, the undrained bearing capacity of shallow circular footings on soft ground improved with deep cement mixing. Guidelines are given to identify the importance of the degree of cementation on the bearing capacity of shallow footings. Using a bearing capacity improvement factor, the influence of the degree of cementation and the extent of the cemented region on bearing capacity has been investigated. Finally, the performance of deep cement-mixed columns has been investigated using the numerical model. The results indicate that there exists an optimum length to diameter ratio for the deep mixed cement columns and this optimum ratio depends on the degree of cementation of the soil.

1 INTRODUCTION

During the past few decades, construction activities have increased considerably over soft ground such as around river estuaries, low-lying marshy areas and harbour foreshores, i.e. areas which may previously have been considered unsuitable for development. Due to generally low bearing capacity and often excessive settlement of these soils, geotechnical engineers dealing with foundation construction over soft ground encounter a real challenge. Although consolidation-based ground improvement methods such as preloading and vertical drains are used for soft ground improvement, it is often not economical to allow the soil to gain strength and stiffness through consolidation alone due to time constraints and the uncertainty of soil conditions. As a result, a wide range of ground improvement methods has been developed to support foundations on soft ground. One such method is in situ deep cement mixing, which provides improved strength and reduced compressibility for soft ground (e.g., Kanon and Bergado, 1991). Due to its low cost and efficiency, this method is now increasingly used to improve soft ground.

At the laboratory scale, the influence of cementation on soft clay behaviour has been studied by Kassma et al. (2000), Miura et al. (2001), Bergado et al. (2004), and Hopibala et al. (2004, 2005), and significant progress has been made in understanding the fundamental behaviour of cemented clays. Recently Liu et al. (2006) proposed a constitutive model for cemented clays as an extension of the Structured Clay model proposed previously by Liu and Carter (Liu and Carter, 2002; Carter and Liu, 2005). This model has been successfully applied to investigate the influence of the structure of natural soils on foundation behaviour (Liyanapathirana et al., 2003a, 2003b; Liyanapathirana and Carter, 2005). It has also been used successfully to describe the behaviour of cemented clay observed during laboratory experiments. Although the finite element method has been used to study the application of deep mixed columns in different geotechnical applications (e.g., Han and Gabr, 2002; Dong et al., 2004), use of a rigorous constitutive model capturing the salient features of cemented soil behaviour has not yet been achieved. Han and Gabr (2002) used a Mohr-Coulomb model and Dong et al. (2004) used a Drucker-Prager model to simulate cement-mixed soil behaviour in their finite element analyses.

The main objective of this paper is to examine the significance of the degree of cementation and the extent of the cemented region on the undrained bearing capacity of shallow foundations resting on deep cement-mixed clay deposits. The influence of the degree of cementation on the load-carrying capacity of deep cement-mixed columns is also investigated. A series of numerical simulations has been carried out by incorporating the constitutive model proposed by Liu et al. (2006) for cemented soils into the finite element program AFINA (Carter and Badlam, 1995). The new cemented clay model is a relatively simple elasto-plastic model, which was developed with the aim of providing a practical tool for solving boundary value problems encountered in geotechnical engineering practice in cases where cemented soils are involved.

Based on these numerical simulations, guidelines are provided to identify the influence of the degree of cementation and the extent of the cemented region on the bearing capacity of shallow circular foundations and the optimum length to diameter ratio for deep cement-mixed columns.
2 NUMERICAL MODEL

The axisymmetric finite element mesh used for the analysis consists of eight-node quadrilateral elements and the numerical integration was carried out using four-point Gauss integration. The mesh used for the shallow foundation analysis extends 7B in the vertical and radial directions, where B is the diameter of the footing. In both radial and vertical directions, the finite element mesh was made coarser with increasing distance from the footing.

The constitutive behaviour of the cement-mixed soil was modelled using the cemented clay model developed by Liu et al. (2006). The soil surrounding the deep cement-mixed columns was assumed to be in an undisturbed natural state and was modelled using the Structured Cam Clay model of Liu and Carter (Liu and Carter, 2002; Carter and Liu, 2005), which takes into account the natural structure possessed by the in situ soil. The footing was assumed to be rough and rigid and resting on the surface of the finite layer of soil. The footing was loaded by specifying uniform vertical displacements, which were applied incrementally to the soil beneath the footing while the rest of the top boundary of the soil layer was free to move in both radial and vertical directions. The bottom and vertical boundaries were constrained from moving in both vertical and radial directions.

The load carrying capacity of deep-mixed cement columns was investigated using a finite element mesh extending 5D in the radial direction and 10D in the vertical direction, where D is the diameter of the deep-mixed cement column. During this analysis, the load carrying capacity of the columns was investigated for different degrees of cementation by varying the length to diameter ratio of the cement columns. The boundaries of the finite element mesh were constrained similarly to the footing analysis.

3 PARAMETERS DEFINING IN SITU AND CEMENTED SOIL BEHAVIOUR

The cemented soil model developed by Liu et al. (2006) is also developed within the Structured Cam Clay model framework (Liu and Carter, 2002). It uses five parameters to define the soil structure due to cementation, in addition to the usual parameters used to define destructured, reconstituted soil behaviour in the Modified Cam Clay model (Roscoe and Burland, 1968). The additional parameters are b, \(p_{\text{y}} \), \(\alpha \), \(\gamma \), \(s_0 \), and they are described in the following paragraph.

The destructuring index, \(b \), quantifies the rate of destructuring with increasing mean effective stress and \(p_{\text{y}} \), defines the mean effective yield stress at which the breakdown of the cemented structure begins. The two model parameters \(\alpha \) and \(\gamma \), define, respectively, the influence of soil structure due to cementation on the plastic potential of the soil and the effect of shearing on destructuring. The latter is directly proportional to the value of \(\gamma \). As illustrated in Figure 1, an additional change in void ratio, \(\Delta e \), is sustained by the cemented soil with respect to the reconstituted soil and is defined by:

\[
e = e^* + \Delta e, \quad \left(p_{\text{y}}^{\prime} + \frac{C}{M^*} \right)^b
\]

where \(e \) is the void ratio of the cemented soil, \(e^* \) is the void ratio of the same soil at the reconstituted state, and \(M^* \) is the critical state strength parameter of the soil without any cementation.

The degree of cementation has been incorporated in the cemented clay model by defining a modified effective stress parameter as:

\[
\bar{p} = \frac{p_{\text{y}}^{\prime} + C}{M^*}
\]

where \(C = s_0/2 \) and \(s_0 \) is the undrained shear strength of the cemented soil. The parameter \(C \) incorporates the contribution of cementation to the shear strength of the soil with respect to the reconstituted soil.

The typical variation of void ratio, \(e \), with the mean effective stress, \(p' \), for a cemented clay and for the same soil at the reconstituted state are illustrated in Figure 1. Figure 2 illustrates the yield surface for the cemented clay in \(p' - q \) stress space, which is given by:

\[
F = q^2 + M^{*2}\bar{p}'(p' - p'_M)
\]

where \(p'_M \) is the size of the yield surface. The initial mean effective yield stress, \(p_{\text{y}}^{\prime*} \), is related to the size of the initial yield surface as follows:

\[
p'_M = p''_M + \frac{C}{M^*}
\]
Although the yield surface for the cemented clay is elliptical, it does not pass through the origin in \(p' - q \) space. Non-associated plastic flow is assumed for the cemented soil.

![Figure 1. Compression behaviour of cemented soils](image)

4 SOIL PARAMETERS

For the numerical results presented in this paper, cemented Ariake soil with cement contents of 6\%, 9\% and 12\% have been considered. The cement content, \(A_c \), is defined here as the ratio of cement to clay by dry mass.

The undisturbed soil around the cemented soil also has a structure and hence it was modelled using the Structured Cam Clay model (Carter and Liu, 2005). In order to obtain the properties of the cemented and undisturbed Ariake Clay, triaxial test results given by Horpibulsuk et al. (2004) have been used, and the derived values of the model parameters are presented in Table 1.

![Figure 2. Structural and equivalent yield surfaces for cemented clays](image)
Table 1: Model parameters for undisturbed and cemented Ariake clay.

<table>
<thead>
<tr>
<th>Property</th>
<th>$A_w = 0%$ (Undisturbed)</th>
<th>$A_w = 6%$</th>
<th>$A_w = 9%$</th>
<th>$A_w = 12%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ'</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>κ'</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>M'</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>v'</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>e_{ci}</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>B</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Δe</td>
<td>1.44</td>
<td>1.32</td>
<td>2.26</td>
<td>2.42</td>
</tr>
<tr>
<td>γ</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>ω</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>γ_0 (kN/m3)</td>
<td>17.0</td>
<td>17.0</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>p'_{yd} (kN/m3)</td>
<td>38.0</td>
<td>60.0</td>
<td>220.0</td>
<td>380.0</td>
</tr>
<tr>
<td>C (kN/m2)</td>
<td>0.6</td>
<td>13.64</td>
<td>50.0</td>
<td>86.365</td>
</tr>
<tr>
<td>s_n (kN/m2)</td>
<td>27.27</td>
<td>100.0</td>
<td></td>
<td>172.73</td>
</tr>
</tbody>
</table>

λ' = gradient of the normal compression line in $e - \ln (p')$ space,
κ' = gradient of the unloading and reloading line in $e - \ln (p')$ space,
M' = gradient of the CSL in $p' - q$ space,
v' = Poisson's ratio,
e_{ci} = void ratio at $p' = 1$ kPa on the CSL in $e - \ln (p')$ space,
γ_0 = bulk unit weight

Based on laboratory test results, Horpibulsuk et al. (2004, 2005) were able to relate the mean effective yield stress, p'_{yd}, and the undrained shear strength of the soil, s_n, by the following equation:

$$p'_{yd} = 2.28 s_n$$

During an in situ cement mixing process, a column of soil is cut by rotating blades and cement slurry or powder is forced into the ground while mechanically mixing it with the soil. Therefore the natural structure of the in situ soil will be highly disturbed during the deep cement mixing process, and will be replaced by a new structure due to the presence of the hydrated cement. It should be recognised that the five parameters defining soil structure will not, in general, be the same for the cemented soil and the undisturbed in situ soil. Unfortunately, the available data are not sufficient to assess all five parameters defining the soil structure for different degrees of cementation. Therefore, only Δe and p'_{yd} have been changed, with C for the different degrees of cementation considered in the finite element analyses carried out in what follows. It is assumed that parameters b, ω, and γ take the same values as for the in situ (undisturbed) Ariake clay without any cementation. All properties describing the soil in its reconstituted states are the same for both the cemented and in situ Ariake clay and are denoted by the superscript *. Further details of this model have been given previously by Liu et al. (2006).

A number of other assumptions have been made in the process of choosing parameters for the cemented Ariake clay. In the cemented clay model it is assumed that the gradient of the critical state line, M', which is a function of the critical state friction angle of the soil, is the same as that of the Ariake clay at the reconstituted state.

According to Horpibulsuk et al. (2004), the introduction of a small amount of cementation to the clay will increase the friction angle of the soil. However, they showed that this enhancement is insignificant with further increase in degree of cementation. Although the destructuring index, b, which controls the rate of breakage of cementation, is expected to vary with the cement content, the available data are insufficient to assess this variation. Therefore, the same value of b has been used for both undisturbed and cemented Ariake clay. In what follows, all properties of the destructured, reconstituted soil are denoted by the superscript *.
Figure 3. Cumulative displacements at peak bearing capacity (a) $A_w = 6\%$ and (b) $A_w = 12\%$.

5 MODE OF BEARING CAPACITY FAILURE

Figures 3 (a) and (b) show respectively the cumulative soil displacements predicted beneath a 2.5 m diameter shallow footing on Ariake clay with cement contents of 6% and 12%. In both cases, displacement vectors represent the soil flow when the mobilised bearing resistance reaches the peak value. It can be seen that the failure mechanisms are not the same for the two cases considered. When the cement content is 6%, soil beneath the centre of the footing moves predominantly in the vertical direction, but towards the outer edge of the footing, soil movement is predominantly in the radial direction and the soil heaves around the footing, similarly to a general shear failure. For a cement content of 12% a similar pattern can be seen beneath the footing, but the displacement vectors closer to the edge of the footing are predominantly in the radial direction. They do not indicate heave of the ground surface, but rather a local shear failure.

![Graph showing predicted undrained bearing capacity](image)

Figure 4. Predicted undrained bearing capacity for a 2.5 m diameter circular footing ($A_w = 9\%$)

6 INFLUENCE OF CEMENT CONTENT ON BEARING CAPACITY

Figure 4 illustrates the predicted undrained bearing response of a 2.5 m diameter circular footing founded on Ariake clay with a cement content of 9%, which shows clearly that the mobilised bearing resistance reaches a peak value during undrained loading but beyond the peak starts to decrease gradually.

This behaviour can be explained by observing the stress path at a typical Gauss integration point located beneath the footing, as illustrated in Figure 5. Close to the ground surface, the initial effective stress of the soil is very
low and therefore the cemented clay has a high over-consolidation ratio. Thus the undrained stress path rises approximately vertically on this plot. When the stress state reaches the structural yield surface of the cemented soil, it behaves as a virgin yielding material and the stress state moves approximately along the yield surface. Once \(q/(p'+C/M') \) reaches \(M' \) the process of destructuring begins. During this phase, resistance to shear deformation is reduced considerably and breakdown of soil structure begins, together with the removal of the effects of cementation. The behaviour of the soil element, particularly the undrained effective stress path shown in Figure 5, is consistent with experimental observations for highly over-consolidated soils (e.g., Bergado et al., 2004; Hopibulsuk et al., 2004). Thus the fundamental features of cemented clay seen in single element tests have been captured successfully in the numerical scheme when applied to a boundary value problem.

![Figure 5. Stress path at a Gauss integration point beneath the footing.](image)

In the plot of bearing capacity versus displacement shown in Figure 4, this phase is marked by a decrease in the mobilised bearing resistance of the footing. Such decreases in the bearing resistance should be considered in geotechnical engineering designs if post-peak displacement is allowed to occur for a practical structure.

With increase in the degree of cementation, \(A_w \), the mobilised bearing resistance increases significantly, as illustrated in Figure 6. For example, when \(A_w = 9\% \), there is a five-fold increase in the predicted maximum mobilised bearing resistance, compared to the undrained bearing resistance obtained for the natural undisturbed soil with \(A_w = 0\% \).

![Figure 6. Variation of undrained bearing capacity with degree of cementation.](image)
The dependency of the elastic deformation parameters of soils on cementation and sub-yielding behaviour has been observed experimentally by Miura et al. (2001), Bergado et al. (2004) and Horpibulsuk et al. (2004). However, the constitutive model used for this study assumes that the behaviour of both cemented and uncemented clays is independent of cementation for loading inside the yield surface. Although this is a limitation of the current cemented clay model, it can still capture the important facets of cemented clay behaviour during loading, such as the destructuring phase of the cemented clay, which contribute to the reduction in peak bearing resistance during loading.

7 INFLUENCE OF THE SIZE OF CEMENTED ZONE ON BEARING CAPACITY

Figure 7 shows the influence of the depth of the cemented region, H, on the bearing capacity of the foundation. The cement content of the soil is 9% and the diameter, B, of the footing considered for the analysis is 2.5 m. The case with $H/B = 0$ corresponds to the soil without any cementation. For the results shown in Figures 6 and 7, the depth of the cement-improved region changed while keeping the width of the cement improved region constant to the full width of the finite element mesh. It can be seen that even a thin layer of cemented soil beneath the footing can have a significant influence on the mobilised bearing resistance. For example, a two-fold increase in bearing capacity is observed with just a 0.25 m thick layer ($H/B = 0.1$) of cemented soil beneath the footing.

Figure 8 shows the bearing capacity improvement factor for different H/B.

![Figure 7. Variation of bearing capacity with the depth of the cemented region.](image)

![Figure 8. Bearing capacity improvement factor for different H/B.](image)
Figure 8 shows the bearing capacity improvement factor defined as $q_{u}(cemented)/q_{u}(uncemented)$ for different H/B, and it shows clearly the influence of H/B on the maximum bearing capacity. This figure corresponds to $A_w = 9\%$ and it can be seen that the bearing capacity of the footing increases up to $H/B = 1$, but beyond this limit further increase in the depth of cemented region II does not have a significant influence on the maximum bearing capacity. Again, a five-fold increase in bearing capacity could be achieved for $A_w = 9\%$ when $H/B = 1$.

Figure 9. Variation of bearing capacity with the width of the cemented region.

Figure 10. Bearing capacity improvement factor for different W/B.

Figure 9 shows the predicted influence of the width of the cemented region on the bearing capacity of the footing when $H/B = 1$. W is the width of the cemented region and $W/B = 1$ corresponds to a cemented region with a radius equivalent to the radius of the footing. It can be seen that the bearing capacity increases up to $W/B = 2$ and beyond that the width of the cemented region effectively has no further influence on the bearing capacity of the footing. According to Figure 9 when $H/B = 1$ and $W/B = 0.2$, the bearing capacity of the footing nearly doubles compared to that for ground that has not been improved by the addition of cement.

Figure 10 shows the variation of the bearing capacity improvement factor for different values of W/B and cement content. It can be seen that irrespective of the cement content, W/B has an optimum value of approximately 2. An eight-fold increase in the mobilised bearing resistance can be achieved for $A_w = 12\%$, with $W/B = 2$ and $H/B = 1$.

Australian Geomechanics Vol 45 No 1 March 2010
8 BEHAVIOUR OF DEEP CEMENT-MIXED COLUMNS

In this section the load carrying capacity of deep cement-mixed columns has been investigated briefly to identify whether the cement content, A_c, has any influence on their load carrying capacity. The effect of the length to diameter ratio, L/D, of the columns, where L is the length and D is their diameter, has also been explored. Soil around the column was modelled using the Structured Clay model (Carter and Liu, 2003). The same soil properties as given in Table 1 have been used for this analysis. Figure 11 shows the load carrying capacity of columns for the three cement contents given in Table 1. It can be seen that there is a different critical value of the ratio L/D for each value of cement content. When the cement content is 6%, the critical L/D ratio was about

![Graph showing load carrying capacity of deep cement mixed columns]

Figure 11. Load carrying capacity of deep cement mixed columns.

0.7, but this ratio increases up to 3.5 for a 12% cement content. Normally these columns have a diameter of about 0.5 m and extend up to 5 to 7 m into the ground. However, results obtained from this analysis confirm that the optimum depth of the cement column should be determined based on the cement content.

9 CONCLUSIONS

A numerical model based on the finite element method has been used to investigate the influence of the degree of cementation on the undrained bearing capacity of shallow circular footings. Cemented soil behaviour has been simulated using the Cemented Clay model proposed by Liu et al. (2006) and soil properties were derived based on the experimental results given by Harpibulsuk et al. (2004, 2005) for cemented Ariake clay. The failure modes studied for different degrees of cementation suggest that when the cement content is about 12% failure occurs similar to a local shear failure, and for lower cement content failure occurs as a general shear failure. In both failure modes, the mobilised bearing resistance decreases after reaching the peak due to breakage of the cement structure. Although significant ground heave could be seen around the footing for low cement contents ($A_c = 6\%$ and 9%), with increase in cement soil heaving around the footing is suppressed.

The parametric study shows that the influence of cementation significantly increases the mobilised bearing resistance of footings. It was found that there is an effective region for the application of deep cement mixing with respect to the footing size but the size of this region is independent of the cement content.

Numerical studies were carried out to study the load-displacement response of deep cement-mixed columns and the results suggest that there is an optimum L/D ratio based on the cement content and by increasing L beyond the optimum value, the load carrying capacity of the column cannot be increased.

10 REFERENCES

