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SUMMARY

In this paper, an arbitrary Lagrangian–Eulerian (ALE) method is generalized to solve consolidation
problems involving large deformation. Special issues such as pore-water pressure convection, permeability
and void ratio updates due to rotation and convection, mesh refinement and equilibrium checks are
discussed. A simple and effective mesh refinement scheme is presented for the ALE method. The ALE
method as well as an updated-Lagrangian method is then used to solve some classical consolidation
problems involving large deformations with different constitutive laws. The results clearly show the
advantage and efficiency of the ALE method for these examples. Copyright q 2007 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

In geotechnical problems, deformation is usually coupled with the flow of pore fluids. A coupled
finite element procedure combines the equilibrium equation and the continuity equation through the
effective stress principle and the volumetric strain rate. On the basis of the theory of consolidation
of Biot [1], several large deformation formulations for coupled problems can be found in the litera-
ture. Carter et al. [2] presented a general theory of elastic finite-strain consolidation which was later
generalized to elastoplastic consolidation [3]. Prevost [4, 5] derived a generalized incremental form
of Biot’s consolidation involving finite strains and material nonlinearity. Large deformation in satu-
rated and unsaturated porous media under dynamic loads was studied, respectively, by Zienkiewicz
and Shiomi [6] and Meroi et al. [7]. In all these studies, constitutive equations expressed in
the rate form are normally used to integrate for the stresses over calculated strain increments.
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On the basis of multiplicative decomposition of deformation gradients (e.g. see [8–10], Borja and
Alarcon [11]) presented a mathematical formulation for elastoplastic finite-strain consolidation,
which has been implemented using the finite element method by Borja et al. [12]. Following the
same approach using multiplicative decomposition of deformation gradients, Sanavia et al. [13]
presented a large strain formulation for saturated and partially saturated porous media. This type
of formulation circumvents the rate-type stress integration in large deformation analysis and can
also handle large elastic strains. To handle both the rate-type and the multiplicative decomposition
formulations, an updated-Lagrangian (UL) method is usually adopted where the coordinates of
material points are updated according to the displacements after each time increment. In the case
of relatively large deformations, the UL method can lead to severe mesh distortion that can cause
spontaneous termination of the analysis.

The arbitrary Lagrangian–Eulerian (ALE) method, on the other hand, was developed to handle
large deformation problems with severe mesh distortion in solid mechanics and fluid mechanics.
This method, however, has not attracted much attention in geomechanics—mainly due to its
complexity, particularly in coupled problems involving both deformation and flow of pore fluids.
A recent study by Nazem et al. [14] showed that the ALE method, based on the operator-split
technique [15], can provide an effective solution to the mesh distortion problem encountered in
the UL method.

This paper presents an ALE formulation for consolidation problems. The ALE method is based
on the operator-split technique where a Lagrangian solution is convected to an Eulerian mesh. The
Lagrangian solution, which by itself is also a complete solution of the problem and is referred to
as the UL method, is presented first. Particular attention is then paid to the mesh motion scheme
and the convection of pore-water pressure and state variables in the Eulerian step. The numerical
performance of the UL and the ALE methods is then compared through several numerical examples
of consolidation problems.

2. LAGRANGIAN FORMULATION

2.1. Governing equations

In the UL method, the equilibrium equation states [16]
∇T�t+�t

i j + bt+�t
i = 0 (1)

where �i j denotes the true (Cauchy) stress tensor, bi is the body force vector and ∇ represents the
gradient operator. The right superscript denotes the time when the quantities are measured. The
basic assumption in Equation (1) is that all the variables and state parameters are known up to
time t and the aim is to find the unknowns at time t +�t . The principle of effective stress relates
the total Cauchy stresses to the effective Cauchy stress, �′i j , through the pore-water pressure, p,

d�i j = d�′i j + dp · �i j (2)

where �i j is the Kronecker-delta. In a large deformation analysis, the effect of rigid body rotations
must be considered in the stress–strain relations. This is often taken into account by a frame-
independent stress rate. In this study the Jaumann stress rate is used, which is defined as

d̃�′i j = d�′i j − �′ikd�k j − �′jkd�ki =C ′i jkl · d�kl (3)
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where � is the spin tensor, C ′ is the material constitutive matrix and �i j is the linear strain tensor.
Note that in Equation (3), the Jaumann stress rate is only applied to the effective stress since the
pore-water pressure is frame independent and its unique component does not change under rigid
body rotation. Introducing Equations (2) and (3) into the equilibrium equation and applying the
standard finite element procedure, the following matrix rate equation representing the equilibrium
of the body can be obtained:

Ḟint=KepU̇+ LṖ= Ḟext (4)

where Kep and L are the stiffness and coupling matrices, respectively, Fext is the external force
vector and Fint represents the internal force vector. Detailed expressions for Kep, L and Fint can
be found in the Appendix.

Denoting vs as the velocity of soil particles and ṽ as the superficial velocity of the fluid relative
to the soil skeleton, we can write the conservation of mass as

�vsi

�xi
+ �̃vi

�xi
= 0 (5)

In deriving Equation (5) it is assumed that the soil solids and the pore water are much less
compressible than the soil skeleton. Darcy’s Law states that the superficial velocity of the fluid
relative to the soil skeleton is proportional to the hydraulic gradient

ṽi = n(vwi − vsi )=−ki j
�w

(
�p
�x j
− bw j

)
(6)

where n is the porosity of soil, vw is the velocity of pore fluid, k represents the permeability
tensor, bw={0, �w, 0}T and �w is the unit weight of the fluid.‡ Combining Darcy’s law with the
conservation of mass and following standard finite element linearisation, the following equation
can be obtained (e.g. see [17])

LTU̇+ ḢP= Q̇ext (7)

where H is the flow matrix and Q is the fluid supply vector. Details of the matrices and vectors
in the equation above are given in the Appendix.

2.2. Time stepping

Equations (4) and (7) form the global system of equations as[
Kep L

LT 0

]{
U̇

Ṗ

}
+
[
0 0

0 Ḣ

]{
U

P

}
=
{
Ḟext

Q̇ext

}
(8)

Equation (8) is usually written in the compact form as

CẊ+KX= Ẇext (9)

‡The expression for bw assumes that gravity acts in the negative 2-coordinate (y) direction.
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with

C=
[
Kep L

LT 0

]
, K=

[
0 0

0 Ḣ

]
, X=

{
U

P

}
, Ẋ=

{
U̇

Ṗ

}
, Ẇext=

{
Ḟext

Q̇ext

}

Various time-stepping schemes exist in the literature for solving Equation (9), e.g. Booker and
Small [18], Wood [19], Lewis and Schrefler [20] and Sloan and Abbo [21]. In this study, the
commonly used �-method is used to avoid further complications. Choosing �= 1 leads to a
classical backward Euler scheme shown as

C{Xn+1 − Xn} + hKXn+1= hẆext
n+1 (10)

In the case of constants C and K, such as in small deformation analysis of elastic soil with constant
permeability, the system of equations defined by (10) can be solved for Xn+1. In more general
cases, C and K depend on X and are evaluated at Xn+1 in the backward Euler method. Equation
(10) must then be solved by iteration. The standard Newton–Raphson method is adopted in this
study. More details on solving Equation (9) are given by Sheng and Sloan [22].

2.3. Stress integration

For nonlinear materials, such as those represented by the Mohr–Columb or Cam–Clay models,
the stress increment is usually found by integration over a given strain increment. For small
deformation, the stress integration is performed as follows:

�′t+�t
i j = �′ti j +

∫ ��kl

0
C ′i jkl(�′, �) d�kl

�t+�t
i = �ti +

∫ ��kl

0
Bi (�

′, �) d�= �ti +
∫ ��kl

0
Bi (�

′, �) · Dkl(�
′, �) d�kl

(11)

where �i is a set of hardening parameters, C ′ is the constitutive matrix depending on the current
stresses and hardening parameters, B is a set of variables derived from the hardening law and is
typically a function of the current stresses and hardening parameters, d� is the plastic multiplier
that depends on the strain rate, and D is a vector derived from the consistency condition and the
flow rule and is again a function of the current stresses and hardening parameters.

For a large deformation analysis, the stress integration is no longer governed by Equation (11),
due to possible rigid body rotation. In the UL formulation based on the Jaumann stress rate, the
effective stress increment is found by integrating d�′ in Equation (3) for a given strain increment,
i.e.

�′t+�t
i j = �′ti j +

∫ ��i j

0
d�′i j = �′ti j +

∫ ��kl

0
C ′i jkl(�′) d�kl +

∫ ��kl

0
(�′ik d� jk + �′jl d�il) (12)

where C ′(�′) refers to the constitutive matrix with respect to the configuration at time t and is a
function of the current Cauchy stresses. Equation (12) shows that the stress-integration schemes
used for small deformation have to be modified to include the additional terms due to rigid body
rotation. Considering the skew-symmetry of ��i j , it is possible to show that the second integration
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in (12) is equivalent to a stress transformation:

�′ti j +
∫ ��kl

0
(�′ik d�k j + �′jl d�li )= Qik�

′t
kl Q jl (13)

with

Qi j = (�ik − ���ik)
−1(�k j + (1− �)��k j )

where � is an integration parameter varying between 0 and 1. One key requirement for a stress-
integration scheme for large deformation is that it should be objective, meaning that the stress
transformation (13) should not cause any straining. Hughes and Winget [23] showed that the stress
transformation (13) is objective if Q is orthogonal, and that the orthogonality of Q exists provided
the strain increment and the spin tensor increment are evaluated with respect to the configuration
at the midpoint t +�t/2 and �= 0.5. Under these conditions, the stress integration can be carried
out as

�′t+�t
i j = Qik�

′t
kl Q jl +

∫ ��kl

0
Ci jkl(�

′) d�kl

�t+�t
i = �ti +

∫ ��kl

0
Bi (�

′, �) · Dkl(�
′, �) d�kl

(14)

The integration in (14) is almost identical to the integration in (11) for small deformation. The
only modification is that the stresses at the start of the increment should be transformed according
to (13). Therefore, standard integration schemes used for small deformation can also be used to
update the stresses and hardening parameters in (14). In this study, an explicit scheme based on the
work by Sloan et al. [24] is used. This stress-integration scheme controls the error in the computed
stresses by using a local error measure to automatically subincrement the applied strain increment.
The error measure is computed at each integration point by taking the difference between a first-
order accurate Euler solution and a second-order accurate modified Euler solution. The method
has been used to solve problems involving a wide range of constitutive models for soils and has
been generalized by Nazem et al. [14] for large deformations.

2.4. Porosity and permeability updates

The permeability of a soil depends on its porosity and the latter changes as deformation occurs.
To study the variation of porosity, let nt and V t represent, respectively, the porosity and volume
of a material point at time t . The volumes of the voids and the solids at time t are, respectively,

V t
v = nt · V t

V t
s = (1− nt ) · V t

(15)

As the soil skeleton deforms, its volume at time t + dt will be

V t+�t = J · V t (16)

Since a soil particle is assumed to be incompressible, i.e.

V t+�t
s = V t

s (17)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2008; 32:1023–1050
DOI: 10.1002/nag



1028 M. NAZEM ET AL.

the new volume of the voids will be

V t+�t
v = V t+�t − V t+�t

s = V t+�t − V t
s = J · V t − (1− nt ) · V t (18)

The porosity at time t + �t can then be obtained using

nt+�t = V t+�t
v

V t+�t
= J · V t − (1− nt ) · V t

J · V t
= 1− 1− nt

J
(19)

Note that if deformation is small so that J ≈ 1 in Equation (19), the porosity will then be constant
during the analysis, i.e. nt+�t = nt . Equation (19) shows that in large deformation analysis the
porosity should be updated as the body deforms and its volume changes. Usually it is more
convenient to deal with the voids ratio instead of the porosity in geomechanics. On the basis of
Equation (19), a relationship can be found for the void ratio update according to

et+�t = nt+�t

1−nt+�t
=

1−1−n
t

J

1−
(
1−1−n

t

J

) = J−1+ nt

1−nt =
J−1+ et

1+et
1− et

1+et
= J (1+et )−1 (20)

where e is the voids ratio. Alternatively, we can derive Equation (20) by using the definition of
the voids ratio

et+�t=V t+�t
v

V t+�t
s
=V t+�t−V t+�t

s

V t+�t
s

=V t+�t

V t+�t
s
−1=V t+�t

V t
· V

t

V t
s
· V t

s

V t+�t
s
−1=J (1+et )J−1s −1 (21)

The voids ratio is usually updated and stored at integration points and is therefore a state parameter
like the stresses and strains.

The permeability is usually a function of the voids ratio or porosity. Such a function is typically
obtained by curve-fitting experimental data and depends on the type of the soil. One such function
is the Kozeny–Carman equation [25]

k=C1
e�

1+ e
(22)

in which C1 is a parameter that depends on the viscosity of the permeant, the specific surface area
and the pore shape of the soil, and is usually determined experimentally. The parameter � depends
on the soil type and is typically set to 3 for granular soils. For clays, a logarithmic equation is
used [26]

log k= log k0 − e0 − e

Ck
(23)

where Ck is a soil parameter that is approximately equal to 0.5e0 and k0 is the in situ coefficient
of permeability at the voids ratio e0.

Another important factor that changes the permeability in large deformation analysis is rigid
body rotation of an element of soil. If the soil is anisotropic, the permeability tensor changes due
to rigid body rotation and must be considered in the analysis. Figure 1(a) shows the configuration
of a material point at time t in the x–y system of coordinates. The point is then rotated by �
degrees and is shown again in Figure 1(b) and (c) at time t+�t in the x− y system of coordinates.
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Figure 1. Configuration at time t and t +�t : (a) permeabilities and velocities at time t ; (b) permeabilities
at time t + �t ; and (c) velocities at time t + �t .

We first assume that rigid body rotation is the only deformation mechanism during this time
interval. Darcy’s law at time t and t + dt can then be written, respectively, as follows:

nt (vtwi − vtsi )=−kti j
�ht

�x j
(24)

nt+�t (vt+�t
wi − vt+�t

si )=−kti j
�ht+�t

�xt+�t
j

(25)

where h is the hydraulic head. The rigid body rotation does not change the porosity, i.e. nt+�t = nt ,
and we can define the rotation by the rotation tensor, R, i.e.

xt+�t
i = Ri j x

t+�t
i (26)

It is easy to show that in the case of pure rigid body rotation (i.e. without straining),

Fi j = Ri j =
[
cos � − sin �

sin � cos �

]
(27)

We also notice that

�ht+�t

�xt+�t
i

= Ri j
�ht+�t

�xt+�t
j

(28)
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and

vt+�t
i = Ri j · vt+�t

j (29)

Substituting Equations (28) and (29) into Equation (25) gives

nt+�t · Ri j · (vt+�t
w j − vt+�t

s j )=−kti j · R jk · �h
t+�t

�xt+�t
k

(30)

Multiplying both sides of Equation (30) by R−1 and noting R−1= RT leads to

nt+�t · (vt+�t
wi − vt+�t

si )=−kt+�t
i j · �h

t+�t

�xt+�t
j

(31)

where

kt+�t
i j = RT

ik · ktkl · Rl j (32)

Equation (32) gives the change in permeability due to rigid body rotation.

3. ARBITRARY LAGRANGIAN–EULERIAN FORMULATION

3.1. ALE preliminaries

Mesh distortion is the main drawback of the UL method and it can cause divergence and inaccuracy
in the analysis. The ALE method has been developed to overcome this drawback by separating
the mesh from the material points.

A study of the ALE method and its performance in geotechnical problems has recently been
presented by Nazem et al. [14] and Nazem and Sheng [27], where the ALE method based on the
operator-split technique is shown to be effective in handling the mesh distortion of Lagrangian
methods. The same technique is used here to solve coupled finite element problems. To solve
the coupled governing equations by the operator-split technique, two steps are considered in the
analysis: a UL step followed by a Eulerian step. In the UL step, we solve the coupled equilibrium
and mass conservation equations to obtain the material displacements. At the end of the UL step,
the mesh may be distorted. In the Euler step, a new and better mesh is generated for the deformed
domain to obtain the mesh displacements. All kinematic and static variables are then transferred
from the distorted mesh to the new mesh. The key issues in the operator-split ALE method thus
include the mesh generation in the Euler step and the remapping of variables between the two
meshes. The remapping of the variables is usually done using the convection equation [28]

ḟ r = ḟ + (vi − vri )
� f

�xi
(33)

where ḟ r and ḟ denote the time derivatives of an arbitrary function f with respect to the mesh and
material coordinates, respectively, vi is the material velocity and vri represents the mesh velocity.
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3.2. Mesh movement and mesh optimization

The transformation of state variables by the convection equation (Equation (33)) requires the
determination of mesh movement. To compute the convective velocity, v − vr , knowledge of
the material displacements and mesh displacements is necessary. The material displacements are
obtained at the end of the UL step. A new and undistorted mesh is then generated for the deformed
domain from which the mesh displacements can be found. This procedure basically requires
various mesh-generation algorithms that must consider several factors such as the dimension of
the problem, the type of elements to be generated and the regularity of the domain. Developing
such algorithms to cover arbitrary conditions is cumbersome and costly. A simple and effective
method for determining the mesh displacements based on the elastic analysis is explained in detail
here. This method was originally developed by Nazem and Sheng [27] for two-dimensional plane
strain problems and axi-symmetric problems. The method is based on the observation that mesh
distortions do not usually occur in the analysis of problems with isotropic elastic materials. This
assumption motivates the development of a mesh optimization technique based on elastic analysis.
It must be noted that the boundaries of the problem must not be changed during the procedure
of mesh optimization. However, the nodes can be relocated along the boundaries to decrease the
mesh distortion. The procedure of mesh optimization includes two steps: relocation of nodes along
the boundaries and an elastic analysis that will be explained in the following. The main advantage
of this technique is that it can be easily implemented in existing finite element codes since the
necessary information for an elastic analysis is already available. Moreover, the method does not
take advantage of any complicated mathematical algorithms (such as Laplacian smoothing) for
mesh optimization.

3.2.1. Relocation of nodes along boundaries. As mentioned earlier, mesh displacements and mate-
rial displacements are uncoupled in the operator-split ALE method. The material displacements are
obtained from the UL step. To obtain the mesh displacements, all boundaries are first re-discretized,
which include the boundaries of the domain, the material interfaces and the loading boundaries.
This procedure is depicted in Figure 2. Supposing the nodes on the undeformed boundaries (Fig-
ure 2(a)) are distorted after the UL step as shown in Figure 2(b), these nodes are then relocated
on the deformed boundaries as shown in Figure 2(c). It should be noted that the normal component

Material 1 Material 2

Material 1 Material 2 

Material 1 Material 2

Boundaries(a) (b)

(c)

Figure 2. Relocation of nodes on the boundaries in two-dimensional cases: (a) boundaries before
deformation; (b) boundaries after deformation; and (c) boundaries after relocation of nodes.
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of the convective velocity on a boundary is zero, but not necessarily the tangential component.
Therefore, the tangential component of the convective velocity must be considered when redefining
the positions of these nodes.

The relocation of the nodes requires a mathematical representation of the boundaries. A naive
approach is to use Lagrange polynomials, which will introduce large computational errors if the
number of nodes on a boundary is large (normally greater than 10). A more convenient and accurate
method is the quadratic spline technique [29]which divides the boundary into a number of quadratic
functions. Supposing there are n nodes on an arbitrary boundary with global coordinates xi and
yi , the polynomial defining this boundary can then be written by k quadratic functions as

y=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

⎛⎝yi ·
3∏
j=1
j �=i

(x − x j )

(xi − x j )

⎞⎠ = A1 · x2 + B1 · x + C1, x1�x�x3

5∑
i=3

⎛⎝yi ·
5∏
j=3
j �=i

(x − x j )

(xi − x j )

⎞⎠ = A2 · x2 + B2 · x + C2, x3�x�x5

...

n∑
i=n−2

⎛⎝yi ·
n∏

j=n−2
j �=i

(x − x j )

(xi − x j )

⎞⎠ = Ak · x2 + Bk · x + Ck, xn−2�x�xn

(34)

where

k= n − 1

2
(35)

For boundaries including quadratic elements, n is an odd number and subsequently k will be an
integer number. The length of an arbitrary segment defined by y= Ai · x2 + Bi · x + Ci , where
x2i−1�x�x2i+1, is denoted by Li and may be obtained as follows:

Li =
∫ x2i+1

x2i−1

√
1+

(
dy

dx

)2

dx (36)

Performing the integration in (36) explicitly, Li is given by

Li = f1(x2i+1)− f1(x2i−1) (37)

where

f1(x)= 1

4Ai
((2Ai · x + Bi ) · f2(x)+ ln |2Ai · x + Bi + f2(x)|) (38)

and

f2(x)=
√
4A2

i · x2 + 4Ai · Bi · x + B2
i + 1 (39)
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y ′
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θ
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(c)

i-1

(a) (b)

Figure 3. Spline interpolation technique and its refinement: (a) special case 1; (b) special case 2;
and (c) translation and rotation of the axes.

The total length of the boundary, L , is simply the summation of the lengths of each segment, hence

L =
k∑

i=1
Li (40)

Knowing the length of the boundary, it is easy to redivide it to obtain a set of new nodes,
redistributed spatially in some desired fashion. For simplicity, a vector of normalized lengths li
may be defined where the length between two successive nodes i and i+1 is given by L · li .

The quadratic interpolation (34) provides no solution for the special case where a segment of
the boundary with three respective nodes i−1, i and i+1 satisfies the conditions xi<xi−1<xi+1
and yi−1<yi+1<yi , as depicted in Figure 3(a). In this case no explicit expression in one of the
standard forms y= f (x) or x = f (y) can be obtained by Equation (34). Moreover, if the middle
point of a segment is too close to one of the corner nodes, the curve approximated by Equation
(34) does not represent an accurate estimation of the real boundary. This drawback is shown in
Figure 3(b) where the real segment is plotted as a solid line and the dashed line represents the
quadratic estimation. In this case, the length of the segment and consequently the total length
of the boundary includes a significant error that results in a poor relocation of the nodes. More
importantly, the nodes may leave the original boundary producing a non-zero normal component
of the convective velocity across the boundary.

To overcome these two drawbacks, the origin of the Cartesian system is moved to node i
and the axes are then rotated by � degrees about the new origin, as depicted in Figure 3(c). This
translation and rotation introduces two new systems of coordinates denoted by (x ′− y′) and (x− y),
respectively. The angle � may be determined by assuming x is tangent to the segment at node i .
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In other words, node i will be chosen as a minimum (or maximum) point of the segment in (x− y)
coordinates. The quadratic function describing the segment in (x − y) coordinates can then be
expressed as

y= A · x2 (41)

where A is a constant to be determined and{
x

y

}
=
[

cos � sin �

− sin � cos �

]{
x ′

y′
}

(42)

in which

x ′ = x − xi
y′ = y − yi

(43)

By substituting the coordinates of nodes i − 1 and i + 1 into Equation (41) and using these two
equations to eliminate A, one obtains

yi−1 · x2i+1 − yi+1 · x2i−1= 0 (44)

Transforming this equation to the (x ′ − y′) system of coordinates yields the expression

(− sin � · x ′i−1 + cos � · y′i−1)(cos � · x ′i+1 + sin � · y′i+1)2
− (− sin � · x ′i+1 + cos � · y′i+1)(cos � · x ′i−1 + sin � · y′i−1)2= 0 (45)

Expanding Equation (42) and summarizing the resulting expression lead to the following trigono-
metric equation:

M · tan �3 + N · tan �2 + P · tan �+ Q= 0 (46)

where

M =−x ′i−1 · y′2i+1 + x ′i+1 · y′2i−1
N = y′i−1 · x ′2i+1 − y′i+1 · x ′2i−1
P = (y′i−1 − y′i+1)(2x ′i−1 · x ′i+1 − y′i−1 · y′i+1)
Q = (x ′i−1 − x ′i+1)(x ′i−1 · x ′i+1 − 2y′i−1 · y′i+1)

(47)

Equation (46) has at least one real root that can be explicitly computed without performing a
numerical solution. Therefore, � is given

�=− arctan

[
1

3M

(
N −

3√
R2 + 4(3P · M − N 2)

2 3
√
R

)]
(48)

where

R = 36M · N · P − 108Q · M2 − 8N 3

+12
√
3(4M · P3 − N 2 · P2 − 18M · N · P · Q + 27M2 · Q2 + 4M · Q · N 3) (49)
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Once � is found, substituting the (x − y) coordinates of node i − 1 (or node i + 1) into Equation
(41) and solving for A gives

A= − sin � · x ′i−1 + cos � · y′i−1
(cos � · x ′i−1 + sin � · y′i−1)2

= − sin � · x ′i+1 + cos � · y′i+1
(cos � · x ′i+1 + sin � · y′i+1)2

(50)

The functions defining the boundary can now be written in the following form:

y=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A1 · x2, x1�x�x3

A2 · x2, x3�x�x5

...

Ak · x2k, xn−2�x�xn

(51)

An algorithm that relocates the nodes on a boundary by the method explained above is summarized
below. This algorithm computes the length of a segment and the total length of a boundary and
then uses the bisection method to find the new position of nodes.

Algorithm 1 (Nodal relocation across a boundary)

(1) Enter with number of nodes on the boundary n, global coordinates of each nodes (xi and
yi ), and the normalized lengths li (1�i�n − 1).

(2) Allocate memory for temporary coordinates x∗i and y∗i (1�i�n − 2).
(3) Set k= (n − 1)/2 and perform steps 4–7 for i = 1 to k.
(4) Compute x ′2i+ j and y′2i+ j for j =−1, 0, 1 using

x ′2i+ j = x2i+ j − x2i

y′2i+ j = y2i+ j − y2i

(5) Find �i by Equation (48) and the parameters defined in (47), then calculate Ai using
Equation (50).

(6) Compute x2i+ j and y2i+ j for j =−1 and 1 using{
x2i+ j

y2i+ j

}
=
[

cos �i sin �i

− sin �i cos �i

]{
x ′2i+ j

y′2i+ j

}

(7) Calculate the length of quadratic spline:

Li = f 1(x2i+1)− f 1(x2i−1)

f 1(x)=
1

4Ai
(2Ai · x · f 2(x)+ ln |2Ai · x + f 2(x)|)

f 2(x)=
√
4A

2
i · x2 + 1
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(8) Find the total length of the boundary L by L = ∑k
i=1 Li .

(9) Perform steps 10–15 for i = 1 to n − 2.
(10) Set X1= x1 and X2= xn .
(11) If i>1, then set X1= x∗i−1.
(12) Set xs = X1.
(13) Calculate xt = (X1 + X2)/2 and find the length of the boundary between xs and xt and

store it in Ls .
(14) If |Ls − L · li |�PREC, first set x∗i = xt , compute the correspondent y∗i and then set i← i+1

before returning to step 10.
(15) If Ls<L · li , then

X1= xt

else

X2= xt

Endif.
Go to step 13.

(16) Set xi+1= x∗i and yi+1= y∗i for i = 1 to n − 2.
(17) Exit with the new global coordinates xi and yi .

Note that equations given in step 7 are the special cases of Equations (37)–(39) when Bi = 0.
In addition, the variable PREC in step 14 is a parameter representing the precision of the nodal
relocation and is typical in the range of 10−3–10−6.

3.2.2. Mesh refinement by elastic analysis. The UL step in the operator-split technique is performed
to obtain the material displacements. The incremental material displacements �ui and subsequently
the locations of material points xt+�t

i are known at the end of this step. However, the resulting
mesh can often be distorted. Relocation of nodes, as explained in the previous section, provides
the locations of mesh points (xri )

t+�t only for those on the boundaries. Therefore, the incremental
mesh displacements �uri for all nodes on the boundaries may be obtained by

�uri = (xri )
t+�t − xt+�t

i + �ui (52)

Mesh distortions can be removed by refining the mesh by simply relocating the interior nodes. With
known displacements �uri of the nodes on the boundaries, an elastic analysis is performed using
the mesh at time t and �uri as the prescribed displacements along the boundaries. This analysis
assumes isotropic linear elasticity of a homogeneous medium and small deformation theory and
aims to find �uri for internal nodes. Because the displacements are prescribed along all boundaries
and material interfaces, the actual values of the elastic parameters used in this analysis are not
important and one set of elastic parameters can be used for the entire domain, regardless of the
presence of real material interfaces. The incremental displacement components computed for each
node from this elastic analysis are then added to the nodal coordinates of the mesh at time t to
define the locations of the nodes in the new mesh at time t + �t by

(xri )
t+�t = xti + �uri (53)

The new mesh and the mesh at time t share the same connectivity. Such an elastic analysis should
result in an optimal mesh if the nodes on the boundaries are optimally located. More importantly,
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such an analysis is very fast to complete, compared with the use of mesh generation processes,
e.g. by triangulation.

3.3. Remapping state variables

In general, two sets of variables must be transformed by the convection equation (33) once the mesh
displacements are known: variables at integration points (such as stresses, hardening parameters
and permeabilities) and variables at nodal points (such as pore-water pressures). Although the
same equation is used for remapping both sets of variables, the procedures are, however, different.
Remapping the variables at integration points is explained here, with the stresses used as an
example. Multiplying Equation (33) by the time increment and substituting the effective stresses
for function f leads to

�′ri j = �′i j + (urk − uk) ·
��′i j
�xk

(54)

where �′r ’s are the effective stresses at the Gauss points of the new mesh and �′’s are the
corresponding values for the old mesh. To find the gradient of an arbitrary component of the
effective stresses in Equation (54), we may write

��′

�xi
= ��′

�	
· �	

�xi
+ ��′

�

· �


�xi
(55)

The above equation is valid for two-dimensional isoparametric elements. The derivatives of the
effective stresses with respect to the normal coordinates, 	 and 
, can be computed using the
displacement shape functions Ni

��′i j
�	
=

n∑
k=1

�Nk

�	
· �′ki j

��′i j
�

=

n∑
k=1

�Nk

�

· �′ki j

(56)

where n is the number of nodes per element and the �′k are the nodal effective stresses. To
compute the nodal effective stresses, a nodal stress recovery technique can be used. In this study,
the super-convergent patch recovery technique developed by Zienkiewicz and Zhu [30] is used.
This method assumes that the stress values in a patch are computed using a polynomial of the
same order as the displacement shape functions. For more details, see Zienkiewicz and Zhu [30].

To remap the state variables at nodal points, such as the pore-water pressures, we again use
Equations (54) and (55) with the effective stresses �′ and �′r replaced by the corresponding pore-
water pressures p and pr , respectively. Equation (56) is then rewritten in terms of the pore pressure
shape functions Npi ,

�pi j
�	
=

m∑
k=1

�Npk

�	
· pki j

�pi j
�

=

m∑
k=1

�Npk

�

· pki j

(57)
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Apply convection equation at

each  Gauss  point  to  find  new
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Enter with known state
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values at nodal point.
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Exit with new state variables at

nodal and Gauss points.

Figure 4. Remapping state variables: (a) at Gauss points and (b) at nodal points.

where m represents the number of pore pressure nodes per element and pk are the nodal pore
pressures that are known from the UL step. Here no nodal recovery procedure is required. The
convection equation is applied at the pore pressure nodes of each element. Finally, the new values
of pore-water pressures at integration points are computed by the interpolation functions.

The above two procedures for remapping state variables at integration points and nodes are
shown schematically in Figure 4.

3.4. Equilibrium check

The transformation of state parameters between the old mesh and the new mesh is not guaranteed to
be objective. As such, the global equilibrium and the local consistency conditions may be violated
after the transformation. To the authors’ knowledge, there is no simple solution to this problem
available in the literature. Therefore, the global equilibrium and the local consistency must be
checked again. To bring the system to equilibrium, additional Newton–Raphson iterations may be
needed, and test runs indicate that typically 2–5 iterations are required to reduce the unbalanced
forces to tolerably small values. If the remapping of the stresses and hardening parameters causes
the consistency condition to be violated at the integration points, the drift correction scheme
described in Sloan et al. [24] is used to bring the stresses back to the yield surface.
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4. NUMERICAL EXAMPLES

The UL and the ALE methods explained in the previous sections have been implemented into
the finite element code, SNAC, developed at the University of Newcastle, Australia. This code is
used for all the numerical examples presented in this section. Six-noded triangular isoparametric
elements, with two displacement degrees of freedom at each node and one pore-water pressure
degree of freedom at each corner node, are used in all problems.

Although the methods described in this paper can be used to analyze general types of large
deformation problems in geomechanics, we limit our applications here to cavity expansion and
elastoplastic consolidation of a footing with hardening and non-hardening materials. Consolidation
problems involving large deformations have also been addressed by others, e.g. Carter et al. [2, 3],
Zienkiewicz and Shiomi [6], Borja and Alarcon [11], Meroi et al. [7], Borja et al. [12] and
Zienkiewicz et al. [31]. In all these studies, the UL method has been used to obtain a solution.

4.1. Elastoplastic cylindrical cavity expansion

Cavity expansion is one of the few problems for which an analytical finite-strain plasticity solution
exists in the literature. To validate the finite element formulation, the expansion of a long cylindrical
cavity in an infinite medium is studied here. The problem, boundary conditions and material
properties are shown in Figure 5(a). Note that, because of the plane strain formulation used, a
quarter of the circle has to be used to model the cavity expansive. The internal radius of the cavity
and the thickness of the soil layer are assumed to be a0 and 60a0, respectively. The theoretical
solution of this problem assumes an infinite medium. To simulate this, a correcting elastic layer
is added to the soil layer [32]. In Figure 5(a), c is the cohesion of soil and � denotes the
friction angle. Note that a prime superscript and a subscript u denote the drained and undrained
conditions, respectively. For a soil skeleton obeying the Mohr–Coulomb failure criterion the drained
and undrained properties of the soil must satisfy the following criteria [33]:

Eu = 3E ′

2(1+ �′)
(58)

cu
c′
= 2

√
N�

1+ N�
(59)

where N� is defined by

N�= 1+ sin�′

1− sin�′
(60)

The material properties of the correcting layer are those recommended by Burd [32]. Figure 5(b)
represents the finite element mesh of the cavity used in this analysis. The loading includes a
prescribed radial displacement of magnitude 4a0.

In the first analysis, the soil is assumed to behave as a Tresca material (�= 0) under undrained
conditions. Only the displacement degrees of freedom are considered in this case and the results
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Figure 5. Cavity expansion problem: (a) geometry (not to scale), boundary conditions and
material properties and (b) finite element mesh, 256 elements and 561 nodes.

are shown in Figure 6(a). The analytical solution according to Yu [34] is

�

cu
= 1+ ln

[
G

cu

(
1− a20

a2

)
+ a20

a2

]
(61)

where � represents the internal pressure of the cavity, G is the shear modulus and a is the current
internal radius of the cavity. Only results of the UL analysis are shown in Figure 6(a) since no
serious mesh distortion is observed in this problem. Equation (61) predicts that the limit value of the
ratio �/cu will be 3.87 or 3.84 when a approaches infinity or a= 5a0, respectively. The numerical
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Figure 6. Normalized internal pressure of the cavity versus normalized radial displacement: (a) Tresca
material, undrained analysis and (b) Mohr–Columb material, drained and coupled-drained analysis.

prediction of this limiting value is found to be 3.78 for a total expansion of 5a0. Figure 6(a) shows
a good agreement between the analytical and numerical solution.

In the second type of analysis we consider the drained expansion of a cylindrical cavity in a
Mohr–Columb material. The analytical solution for cavity expansion in this material is given by
Yu [35] and is plotted in Figure 6(b). The results from displacement analysis and coupled analysis
under drained condition are also shown in Figure 6(b). The total prescribed displacements are
applied on the internal boundary over a period of 106 s to allow the excess pore-water pressures to
dissipate fully. The limiting ratio between the cavity pressure and drained cohesion under 4a0 radial
displacement is found to be 6.92, 7.00 and 7.09 by analytical solution, displacement analysis and
coupled analysis, respectively. These values again indicate a good agreement between the analytical
solution and the finite element solution.

4.2. Two-dimensional consolidation of a footing on an elastoplastic soil layer

The second example includes the analysis of a rigid strip footing resting on an elastoplatic soil
layer. The problem geometry and material properties are shown in Figure 7(a), where � represents
the unit weight of the soil. Plane strain conditions are assumed and only half of the problem is
considered, as depicted in Figure 7(b). The top and the bottom surfaces are assumed permeable. All
the nodes under the footing are constrained in both horizontal and vertical directions to represent
a rigid and rough interface.

The model is analyzed in three stages. In the first stage, body force loading due to the self-
weight of the soil is applied quickly to generate a non-zero initial stress field and a hydrostatic
pore pressure profile in the soil. In the second stage, a uniform pressure q = 20 (kPa) is applied
on the footing over a period of 1 day. Finally, the load q is kept constant and the soil is allowed
to consolidate over time. The analysis is continued until t = 105 (days).

Figure 8 shows the settlement versus time for the applied load. Both the ALE analysis and the
small deformation analysis have finished with a solution, while the UL analysis terminates at time
t = 98 days due to a negative Jacobian of some elements underneath and next to the footing edge.
The ALE method predicts a final settlement of 2.35 (m), which is 5% larger than the corresponding
value for the small deformation analysis (2.23m). Note that the final settlement of the footing
predicted by the ALE method is obtained after 20 000 days while the time for final settlement of
the footing by small deformation analysis is 7500 days. The main reason for such a difference
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Figure 7. Rigid footing on an elastoplastic soil layer: (a) geometry, boundary conditions and material
description and (b) finite element mesh of right-hand half of the footing, 872 elements and 1817 nodes.

is because of the coefficients of permeability which are kept constant in a small deformation
analysis but they are a function of displacements in the ALE analysis. While the soil under the
footing is deformed and consolidated, the permeability of the soil decreases. Therefore, the final
settlement of the footing is achieved in a longer time compared with the analysis assuming constant
coefficients of permeability. This example shows that the proposed ALE method is more efficient
than the UL method in footing problems with large settlements. The deformed meshes for the
small deformation analysis and the ALE analysis are shown in Figure 9. No mesh distortion can
be observed in the ALE analysis.

4.3. Elastoplastic consolidation of a footing on a modified Cam–Clay material

In the third example, the performance of the UL and the ALE methods are compared in the case
of modified Cam–Clay (MCC), a more complex soil model that is capable of simulating strain
hardening and softening via one hardening parameter (the preconsolidation pressure). Again we
study the consolidation settlement of a rigid footing, with the finite element mesh and material
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Figure 8. Settlement versus time for elastoplastic consolidation of the footing.

Figure 9. Deformation under footing on an elastoplastic soil: (a) small deformation, end of analysis and
(b) the ALE method, end of analysis.
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Figure 10. Finite element mesh for the consolidation of the rigid footing on an MCC
soil (256 nodes, 288 elements).

properties shown in Figure 10. The parameters in Figure 10 include the following:

• �: the slope of the normal compression line (NCL) in the space of the logarithmic mean
stress ln p′ versus the void ratio e,
• �: the slope of the unloading-reloading line in the ln p′ − e space,
• eN : the intercept of the NCL on the e-axis when ln p′ = 0,
• OCR: the over-consolidation ratio of the soil,
• K0: the coefficient of earth pressure at rest, and
• �: the unit weight of the soil.

Note that the yield surface of the MCC model used in the analysis is a rounded Mohr–Coulomb
hexagon in the deviatoric plane [36]. Because the MCC soil does not have any shear strength at
zero mean stress, a thin layer of elastic material is added on top of the MCC soil to prevent a
slope instability problem when the settlement of the footing becomes very large. Such a problem
could also be avoided by introducing a small cohesion in the MCC model.

The analysis includes three stages. In the first stage, we use body force loading due to the
self-weight of the soil to generate a non-zero initial stress field. The rate of this body force loading
is set sufficiently small to establish a hydrostatic pore pressure profile in the soil. Once the initial
stresses are established, the initial yield surface locations are determined according to the current
stresses and the OCR. In the second stage, a uniform pressure q is applied on the footing over a
period of 100 days. Two different values of q = 40 and 100 (kPa) are used for this step. Finally,
the load q is kept constant and the soil is allowed to consolidate over time.
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Figure 11. Settlement versus applied pressure on the footing: (a) q = 40 (kPa) and (b) q = 100 (kPa).
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Figure 12. Settlement versus time for the footing on an MCC soil: (a) q = 40 (kPa) and (b) q = 100 (kPa).

Table I. Final settlement and the time for consolidation of footing on MCC soil.

Applied load (kPa) Method Final settlement (m) Time (days)

q = 40 Small deformation 0.836 5100
UL 0.274 630
ALE 0.242 330

q = 100 Small deformation 0.528∗ 35
UL 0.648∗ 77
ALE (constant permeability) 1.165 3100

∗Sudden termination of the analysis.

The predicted load–displacement curves are shown in Figure 11 and the settlement of the footing
versus time is plotted in Figure 12. In both figures, we note there are significant differences between
the large deformation results and the small deformation results. Table I summarizes the predicted
final settlements of the footing and the corresponding times for each analysis. For q = 40 (kPa),
the numerical results show that the difference between the UL method and the ALE method is not
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Figure 13. Deformed meshes under the footing from different methods: (a) small deformation,
q = 40 (kPa), t = 5100 (days); (b) small deformation, q = 100 (kPa), t = 35 (days); (c) UL,
q = 40 (kPa), t = 630 (days); (d) UL, q = 100 (kPa), t = 77 (days); (e) ALE, q = 40 (kPa),

t = 330 (days); and (f) ALE, q = 100 (kPa), t = 3100 (days).

very significant since no mesh distortion occurs in this case. However, the difference between a
small deformation and a large deformation analysis is noticeable. The final settlement of the footing
predicted by small deformation analysis is 0.836 (m), which occurs after 5100 days (approximately
14 years). The final settlements predicted by the UL and ALE methods are 0.274 and 0.242 (m),
respectively, occurring after 630 and 330 days (Figure 12(a)). In the case q = 100 (kPa), only the
ALE method can complete the analysis and predict the final settlement of the footing. The small
deformation analysis and the UL method stop spontaneously during the loading stage after 35
and 75 days, respectively. The former fails due to the applied load being larger than the small-
strain collapse load while the latter fails because of mesh distortion. The total settlement of the
footing predicted by the ALE method is found to be 1.165 (m) after 3100 days for this case
(Figure 12(b)).

The deformed mesh for each analysis is shown in Figure 13. The meshes shown in Figure 13(b)
and (d) are taken at the time just before the failure of the small deformation and the UL analyses,
respectively. It can be seen that the deformed meshes for small deformation analyses are totally
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distorted. Some elements in the UL mesh for q = 100 kPa are also distorted at 77 days. However,
the ALE meshes at the end of each analysis remain reasonably optimal (Figure 13(c)).

5. CONCLUSIONS

The Updated Lagrangian and arbitrary Lagrangian–Eulerian large deformation methods were gen-
eralized to handle coupled large deformation analysis of geomechanical problems in this paper.
Some key conclusions drawn from this study are listed below.

1. Consolidation problems may involve large deformations for which the UL method cannot
provide a solution. The ALE method based on the operator-split technique seems to provide
an effective solution to such problems at finite strains.

2. The mesh refinement scheme adapted in this study works effectively and efficiently for the
consolidation problems studied. The method is easy to implement into existing finite element
codes and it does not require any complicated algorithms for mesh optimization.

3. Compared with single-phase materials involving only displacements, the main complications
in the ALE treatment of consolidation problems are the convection of pore pressures and the
update of the permeability. In this paper, the convection of the pore pressures is carried out at
nodes instead of integration points. The permeability is treated as a function of the voids ratio.

4. In the ALE method based on the operator-split technique, the stresses, the hardening parame-
ters and the pore pressures after the convection step usually violate global equilibrium and the
local consistency condition since there is no objective remapping scheme for the state param-
eters. In this study, the consistency condition is satisfied by projecting the stress states back to
the yield surface according to a drift correction scheme, which ensures that no strain is caused
during the drift correction. Global equilibrium is achieved by additional Newton–Raphson
iterations after the remapping of stresses. More research in this area is necessary.

APPENDIX A

The stiffness matrix, coupling matrix and vector of internal nodal forces in Equation (4) are given
as follows:

[Kep] =
∫
V t
[BL ]T[C′ep][BL ] dV t +

∫
V t
[BNL ]T[r′t ][BNL ] dV t

+
∫
V t
[BL ]T[r′t ][BL ] dV t +

∫
V t
[BNL ]T[P][BNL ] dV t (A1)

[L] =
∫
V t
[BL ]T{m}[Np] dV t (A2)

{Fint} =
∫
V t
[BL ]T{r′} dV t +

∫
V t
[BL ]T{m}{pt } dV t (A3)
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where for two-dimensional plane strain conditions, the corresponding B matrices at the i th node
of an arbitrary element are defined as

[BL ] =

⎡⎢⎢⎢⎣
�Ni

�x1
0

�Ni

�x2

0
�Ni

�x2

�Ni

�x1

⎤⎥⎥⎥⎦
T

(A4)

[BNL ] =

⎡⎢⎢⎢⎣
�Ni

�x1

�Ni

�x2
0 0

0 0
�Ni

�x1

�Ni

�x2

⎤⎥⎥⎥⎦
T

(A5)

[BL ] =

⎡⎢⎢⎢⎣
0 0

1

2

�Ni

�x2

0 0 −1
2

�Ni

�x1

⎤⎥⎥⎥⎦
T

(A6)

in which N denotes the nodal displacement shape functions.
For plane strain problems, the stress vectors and matrices in the above equations are

[r′t ] =

⎡⎢⎢⎢⎢⎢⎣
�′t11 �′t12 0 0

�′t21 �′t22 0 0

0 0 �′t11 �′t12
0 0 �′t21 �′t22

⎤⎥⎥⎥⎥⎥⎦ (A7)

[r′t ] =

⎡⎢⎢⎣
2�′t11 0 2�′t12
0 2�′t22 −2�′t12

�′t12 �′t12 �′t22 − �′t11

⎤⎥⎥⎦ (A8)

[P] =

⎡⎢⎢⎢⎢⎣
p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

⎤⎥⎥⎥⎥⎦ (A9)

{r′} = {�′t11 �′t22 �′t12}T (A10)

{pt } = {pt11 pt22 pt12}T (A11)

{m} = {1, 1, 0}T (A12)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2008; 32:1023–1050
DOI: 10.1002/nag



ARBITRARY LAGRANGIAN–EULERIAN METHOD 1049

The flow matrix in Equation (7) is obtained from

[Ḣ]=
∫
V t

�−1w · [Bp]T[k][Bp] dV t (A13)

where Bp for plain strain problems is defined by

[Bp]=

⎡⎢⎢⎢⎣
�Np1

�x1

�Np2

�x1
· · · �Npm

�x1
�Np1

�x2

�Np2

�x2
· · · �Npm

�x2

⎤⎥⎥⎥⎦ (A14)

and m is the number of nodes with pore pressure degree of freedom per element.
The fluid supply vector is calculated by

{Q̇}=−
∫
St
[Np]Tq dSt −

∫
V t

�−1w · [Bp]T[k]{bw} dV t (A15)
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