Inequalities

Inequalities are like equations, but they do not use = to separate the sides. Instead they use:
$<$ less than
$>$ greater than
$\leq \quad$ less than or equal to
$\geq \quad$ greater than or equal to
$x \geq 4$ means that x can either be equal to 4 exactly, or any value above 4 .

Equations involving inequalities

As an example, say we are trying to solve the inequality $4 x-3<5$
We are after a description of all values of x which satisfy this statement, i.e. that make it true when we substitute the value into the inequality. Our answer will be an inequality describing this set of x values.

If this was an equation, $4 x-3=5$, we would solve it as follows:

$$
\begin{array}{r}
4 x-3=5 \\
4 x=8 \\
x=2
\end{array}
$$

We do the same for the < version:

$$
\begin{aligned}
4 x-3 & <5 \\
4 x & <8 \\
x & <2
\end{aligned}
$$

So our answer is $x<2$, meaning x can be any number below 2 (test some).
For simple equations, we can solve an inequality just as if we were solving a regular equation, with the following rule added:

If you swap the sides of the equation around, or if you multiply or divide both sides by a negative number, then change the direction of the arrow

This is because:

- If $x<y$, then $y>x$
- If $x<y$, then $-x>-y$

You can test these with some real numbers:

- $5<8 \quad 8>5$
- $4>2-4<-2$

Examples

1)

$$
\begin{aligned}
3+5 x & \geq x-7 \\
3+4 x & \geq-7 \\
3 x & \geq-10 \\
x & \geq-\frac{5}{2}
\end{aligned}
$$

3)

$$
\begin{aligned}
2 x & \leq 4 x+18 \\
-2 x & \leq 18 \\
x & \geq \frac{18}{-2} \\
x & \geq-9
\end{aligned}
$$

4)

$$
\begin{aligned}
-\frac{x}{5} & >3 \\
x & <3 \times(-5) \\
x & <-15
\end{aligned}
$$

Inequalities with cases

When we are solving an inequality with a variable on the bottom of a fraction, there is a problem. To get rid of the fraction, we need to know if we are multiplying both sides by a positive or negative value. Solution: split the problem into two cases and try both.

Example:

$$
\frac{4 x}{x-5} \leq 3
$$

We split this into two cases. We know that $x \neq 5$ as that would give us division by 0 .
Case 1: If $x-5<0$, i.e. $x<5$
$4 x \geq 3 x-15$
$x \geq-15$
Case 2: If $x-5>0$, i.e. $x>5$
$4 x \leq 3 x-15$
$x \leq-15$

From case 1 , the answer $x \geq-15$ only applies if $x<5$, so combining those two inequalties we know that $-15 \leq x<5$. Any x within that overlapping range should be a solution.

From case 2 , we have $x \leq 15$, but this only applies if $x>5$. These can't both be true for any value of x, so there is no solution for case 2 .

This means $-15 \leq x<5$ is our final answer.

Exercises

Find the range of x values which satisfy the following inequalities

1) $-2 x+3<7$
2) $3 x-5>6 x+1$
3) $2(x+5) \geq 5 x$
4) $\frac{4-3 x}{2} \leq 7$
5) $\frac{x}{x+1}>2$
6) $\frac{4}{3-x} \leq 7$

Answers

1) $x>2$
2) $x<-\frac{4}{3}$
3) $x \leq \frac{10}{3}$
4) $x \geq-\frac{10}{3}$
5) $x<-2$
6) $x \leq \frac{17}{7}$ or $x>3$
