
Software for Analysing Recurrent Neural Nets

That Learn to Predict Non-regular Languages

Stephan K. Chalup1 and Alan D. Blair2

1 School of Electrical Engineering & Computer Science
The University of Newcastle, Callaghan, 2308, Australia

phone: +61 2 4921 6034, fax: +61 2 4921 6929
www.cs.newcastle.edu.au/∼chalup

chalup@cs.newcastle.edu.au
2 School of Computer Science & Engineering

The University of New South Wales, Sydney, 2052, Australia
blair@cse.unsw.edu.au

Abstract. Training first-order recurrent neural networks to predict sym-
bol sequences from context-free or context-sensitive languages is known
as a hard task. A prototype software system has been implemented that
can train these networks and evaluate performance after training. A spe-
cial version of the (1+1)–ES algorithm is employed that allows both in-
cremental and non-incremental training. The system provides advanced
analysis tools that take not only the final solution but the whole sequence
of intermediate solutions into account. For each of these solutions a qual-
itative analysis of hidden unit activity and a quantitative evaluation of
generalisation ability can be performed.

1 Introduction

Most studies on training first order recurrent nets to predict non-regular lan-
guages report long training times and a low success rate (cf., [Wiles et al., 2001]).
The software system described in the present paper is based on the code that
was written for the study of [Chalup & Blair, 1999] in which for the first time
first-order recurrent neural networks were able to learn to predict subsets of a
context-sensitive language. More details about the algorithms and refined exper-
imental results that were obtained with the extended, current version of the sys-
tem have been included in [Chalup & Blair, 2002]. Compared with feed-forward
neural networks, recurrent neural networks typically take longer to train and
they are also prone to losing a solution again once it has been found. Recurrent
neural networks can be analysed within the framework of dynamical systems.

2 Description of the Software System

The system consists of three main components for the following tasks: (1) train-
ing of the networks, (2) evaluation of the trained networks’ generalisation ability,

P. Adriaans, H. Fernau, and M. van Zaanen (Eds.): ICGI 2002, LNAI 2484, pp. 296–298, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Software for Analysing Recurrent Neural Nets 297

(3) analysis of hidden unit activity. The first two tasks have a very high time
complexity and the software has been implemented in the programming lan-
guage C which can be compiled and run on most supercomputers. The third
component does not have such high speed requirements and is implemented in
matlab where it employs visualisation and animation methods. We now address
the three components of the system in more detail.

2.1 Training

The system allows for a large variety of network topologies. Each net is repre-
sented by a set of connectivity matrices. For example, the well-known simple
recurrent networks (srns) of [Elman, 1990] have feed-forward and copy-back
connections which are active at two consecutive time steps. The system rep-
resents a srn by two connectivity matrices, one for each time step. Networks
active on k time steps would be represented by k connectivity matrices. The
coefficients of the connectivity matrices are integers which determine whether a
link is learnable, frozen or not existing. Associated with each connectivity ma-
trix is a separate weight matrix. The weights were initialised with small random
numbers.
The data consisted of sequences of 30 randomly concatenated strings from

one of the languages {anbn; n ≥ 1} (context-free) or {anbncn; n ≥ 1} (context-
sensitive). Each symbol was encoded as a vector a = (-1,1,1), b = (1,-1,1) or c =
(1,1,-1), respectively. The task was a one-step look-ahead prediction task, that
is, the symbols of the sequence are fed into the network one after the other and
the network has to predict for each symbol the next symbol in the sequence.
As training algorithm the (1+1)–ES of [Rechenberg, 1965] and [Schwefel, 1965]
was implemented. It was combined with data juggling which is a method that
randomly changes the order of the strings in the training sequence after each
epoch during training (cf., [Chalup & Blair, 2002]).

2.2 Generalisation Tests

A neural network can generalise if it is able to process data that was not used for
training. In the project of [Chalup & Blair, 2002] the networks had two different
ways to generalise. One was to generalise to sequences that contained strings of
larger depth n. The other possibility was to generalise to sequences in which the
strings are concatenated in a different order. The software for the generalisation
evaluation takes both aspects into account. Starting with a sequence consisting
of low order strings the network’s accuracy in processing this sequence is tested
on samples of 200 permutations of the test sequence. These tests are repeated
and evaluated for sequences containing strings of increasingly larger depth n up
to and beyond the maximum depth that was used during training.

2.3 Analysis of Hidden Unit Activity

This component of the software can be used to analyse qualitatively how the
network learns. Each network that during the process of weight evolution is able



298 Stephan K. Chalup and Alan D. Blair

to process the training sequence with 100% accuracy is recorded in a separate file.
Then for each of these networks a graph is generated that shows the trajectory
of the activity of the three hidden units while the network is processing the
string a8b8c8. An example graph is plotted below, where the input symbols are
encoded as a1-a8, b1-b8, c1-c8 and the output symbols are encoded as a = •,
b = ×, c = ◦ and the first b of the string is encoded as ∗.

−1
0

1

−1 0 1

−1

0

1

H1H2

H
3

a1 

a2 

a3 

a4 

a5 

a6 

a7 
a8 

b1 

b2 

b3 

b4 

b5 b6 

b7 b8 

c1 

c2 

c3 

c4 

c5 

c6 

c7 

c8 

Each training run produces 40–200 of these graphs. Each of them is a frame in one
of the movie animations of our software demo. This method can be used to ob-
serve bifurcations during training and whether incremental and non-incremental
training have different characteristics.

Acknowledgements

The project is supported by the APAC supercomputer grant Large-Scale Train-
ing of Recurrent Neural Networks and the University of Newcastle ECR grant
Machines Learn via Biologically Motivated Incremental Algorithms.

References

[Chalup & Blair, 2002] Chalup, S. K. & Blair, A. D.: Incremental Training of First
Order Recurrent Neural Networks to Predict a Context-Sensitive Language. Sub-
mitted

[Chalup & Blair, 1999] Chalup, S. & Blair, A. D.: Hill Climbing in Recurrent Neural
Networks for Learning the anbncn Language, Proceedings, 6th International Con-
ference on Neural Information Processing (ICONIP’99),(1999) 508–513

[Elman, 1990] Elman, J. L.: Finding structure in time, Cognitive Science, 14, (1990)
179–211

[Rechenberg, 1965] Rechenberg, I.: Cybernetic Solution Path of an Experimental Prob-
lem, Royal Aircraft Establishment, Library Translation No. 1122, (1965)

[Schwefel, 1965] Schwefel, H.-P.: Kybernetische Evolution als Strategie der experi-
mentellen Forschung in der Strömungsmechanik, Diplomarbeit, Technische Univer-
sität Berlin, Hermann Föttinger Institut für Hydrodynamik, (1965)

[Wiles et al., 2001] Wiles, J., Blair, A. and Boden, M.: Representation Beyond Fi-
nite States: Alternatives to Push-Down Automata, in A Field Guide to Dynamical
Recurrent Networks, Kolen, J. F. and Kremer, S. C. (eds.), , IEEE Press, (2001)
129-142


	Introduction
	Description of the Software System
	Training
	Generalisation Tests
	Analysis of Hidden Unit Activity


