

Logarithms

What do we mean when we ask what log₂16 is equal to?

We are asking what power 2 must be raised to to get 16. Another way of writing this is: If $2^x = 16$, what is x? So, since $2^4 = 16$, we have $\log_2 16 = 4$

$$\log_a(b) = c$$
 is equivalent to $a^c = b$

In general, $\log_a b = c$ means that $a^c = b$. The *a* in this example is called the 'base' of the log. Here are some rules for working with logarithms. Notice that the base doesn't change in any of these rules.

$\log_x(pq) = \log_x(p) + \log_x(q)$	(A)
$\log_x\left(\frac{p}{q}\right) = \log_x(p) - \log_x(q)$	(B)
$\log_x(p^q) = q\log\left(p\right)$	(C)

Examples

1.	Solve log ₃ (9)	= 2	(since 3 ² = 9)
2.	log ₂ (24) – log ₂ (6)	= log ₂ (24 / 6) = log ₂ (4) = 2	(using rule B)
			(since $2^2 = 4$)
3.	Solve log _x (36)	= log _x (6 ²) = 2log _x (6)	(using rule C)
4.	Simplify log _x (216)	$= \log_{x}(2^{3} . 3^{3})$ = $\log_{x}(2^{3}) + \log_{x}(3^{3})$ = $3\log_{x}(2) + 3\log_{x}(3)$	(as 216 = 2×2×2×3×3×3) (using rule A) (using rule C)
5.	$\log_5(x) + \log_3(x)$	cannot be simplified as it use	s different bases

Logarithms on calculators

Most calculators have 2 log buttons, labelled 'log', and 'ln'. These calculate logarithms in base 10, and base *e*, which is approx. 2.718. In is called the natural logarithm, and *e* is an irrational number which pops up in mathematics in several areas, much like π . If you see a log without a base specified, eg log(100), it usually means base 10.

To calculate a different log value on the calculator, you need to convert to another base.

Change of Base formula:

 $\log_{a}(x) = \frac{\log_{b}(x)}{\log_{b}(a)}$

To get log₅(15), we use the change of base formula which says

$$\log_5(15) = \frac{\log_{10}(15)}{\log_{10}(5)}$$

(Note the original base, 5, becomes the number in the log on the bottom of the fraction)

```
On the calculator we type: \log 15 \div \log 5 = 1.682
```

Note that this numerical value is only an approximation, and generally it is considered better to write answers in exact form rather than a calculator answer. It could be useful though to find these approximate values when, for example, plotting on a graph.

For any positive value of b

 $\log_{\rm h}(b) = 1$ and

nd

 $\log_{\rm h}(1) = 0$

Exercises

- 1) log₁₀(10) = ____
- 2) $\log_b(b^a) = _$
- log₄(16) is equal to: _____
- 4) Express ln(6) ln(10) as a single logarithm.
- 5) Give the value of ln(25) accurate to 3 decimal places.
- 6) Express 2log(3) + log(7) as a single logarithm.

- 7) $\log_3(27) + \log_5(1) \log_2(8) =$ ____
- 8) Simplify $5\log_2(4) \log_2(16)$
- 9) Write $\log_{10}(42)$ in terms of the function ln.
- 10) Find a numerical approximation for $\log_2 15$ correct to 3 decimal places.
- 11) Express $a \log b c \log d + b \log a$ as a single logarithm.
- 12) Evaluate $10^{\log_{10} 53}$ (challenge question)

Answers

1)	1	8)	6
2)	а	9)	ln(42)
3)	2	51	ln (10)
<i>-</i> ,	- (3)	10)	3.91
4)	$\ln\left(\frac{3}{r}\right)$	- /	haab
۲ ۱	\5/ 2 210	11)	$\log \frac{d}{dc}$
5)	5.219	121	го ^{и-}
6)	log(63)	12)	53
7)	0		

Graphing log functions

 $y = \log_{a}(x)$ is a reflection of the exponential graph in the line y = x

The *x*-intercept is 1.

The graph is asymptotic to the y-axis.

A table of x and y values can be used to graph the function

Recall $\log_b b = 1$ for all positive b. This should allow you to find a point on the graph. Also recall that $\log_b(b^n) = n$ and so this will allow you to find as many points as you wish. These points along with an x intercept and a general idea of the shape of a logarithm graph will help you graph the log functions.

Exercises

Graph

(a) $y = \log_2 x$ (b) $y = 2\log_3 x$ (c) $y = 1 + \log_3 x$

Solving log equations

Examples

1. Solve
$$\log_3 81 = x$$
 (convert it to an exponential question)
 $3^x = 81$
 $3^x = 3^4$
2. Solve $\log_2(4x) = 8$
 $\log_2 4 + \log_2 x = 8$
 $\log_2 x = 6$
 $x = 2^6 = 64$
3. Solve $\log_3\left(\frac{x}{27}\right) = -1$ (using log rule A)
 $\log_3 x - \log_3 27 = -1$
 $\log_3 x - 3 = -1$
 $\log_3 x - 3 = -1$
 $\log_3 x = 2$
 $x = 3^2 = 9$
Exercises
Solve the following equations for x
1) $\log_5(x) = 2$
2) $\log_3(20x) = 3$
3) $\log_{10}(4x) = 2$
4) $\log_4\left(\frac{x}{2}\right) = 6$
5) $\log_2\left(\frac{2x}{5}\right) = 1$
6) $\log_3\left(\frac{3x}{4} + 1\right) = 8$
7) $\log_x(4) = 2$
8) $\log_x(125) = 3$

Answers

1) x = 255) x = 52) $x = \frac{27}{20}$ 6) $x = 8746\frac{2}{3}$ 3) x = 257) x = 24) x = 81928) x = 5

