MATHS AND STATS

Logarithms

What do we mean when we ask what $\log _{2} 16$ is equal to?
We are asking what power 2 must be raised to to get 16 .
Another way of writing this is: If $2^{x}=16$, what is x ?
So, since $2^{4}=16$, we have $\log _{2} 16=4$

$$
\log _{\mathrm{a}}(b)=c \quad \text { is equivalent to } \quad a^{c}=b
$$

In general, $\log _{a} b=c$ means that $a^{c}=b$. The a in this example is called the 'base' of the log. Here are some rules for working with logarithms. Notice that the base doesn't change in any of these rules.

$$
\begin{align*}
& \log _{x}(p q)=\log _{x}(p)+\log _{x}(q) \tag{A}\\
& \log _{x}\left(\frac{p}{q}\right)=\log _{x}(p)-\log _{x}(q) \tag{B}\\
& \log _{x}\left(p^{q}\right)=q \log (p)
\end{align*}
$$

Examples

1. Solve $\log _{3}(9)=2$
2. $\log _{2}(24)-\log _{2}(6)=\log _{2}(24 / 6)$
$=\log _{2}(4)$
$=2$
(since $2^{2}=4$)
3. Solve $\log _{x}(36)$

$$
\begin{aligned}
& =\log _{x}\left(6^{2}\right) \\
& =2 \log _{x}(6)
\end{aligned}
$$

4. Simplify $\log _{x}(216)=\log _{x}\left(2^{3} \cdot 3^{3}\right)$
$=\log _{x}\left(2^{3}\right)+\log _{x}\left(3^{3}\right)$
$=3 \log _{x}(2)+3 \log _{x}(3)$
5. $\log _{5}(x)+\log _{3}(x) \quad$ cannot be simplified as it uses different bases

Logarithms on calculators

Most calculators have $2 \log$ buttons, labelled ' $/ o g$ ', and ' $/ n$ '. These calculate logarithms in base 10 , and base e, which is approx. 2.718. In is called the natural logarithm, and e is an irrational number which pops up in mathematics in several areas, much like π. If you see a log without a base specified, eg $\log (100)$, it usually means base 10 .

To calculate a different log value on the calculator, you need to convert to another base.
Change of Base formula:

$$
\log _{\mathrm{a}}(x)=\frac{\log _{\mathrm{b}}(x)}{\log _{\mathrm{b}}(a)}
$$

To get $\log _{5}(15)$, we use the change of base formula which says

$$
\log _{5}(15)=\frac{\log _{10}(15)}{\log _{10}(5)}
$$

(Note the original base, 5 , becomes the number in the log on the bottom of the fraction)

Note that this numerical value is only an approximation, and generally it is considered better to write answers in exact form rather than a calculator answer. It could be useful though to find these approximate values when, for example, plotting on a graph.

For any positive value of b

$$
\log _{b}(b)=1 \quad \text { and } \quad \log _{b}(1)=0
$$

Exercises

1) $\log _{10}(10)=$ \qquad
2) $\log _{b}\left(b^{a}\right)=$ \qquad
3) $\log _{4}(16)$ is equal to: \qquad
4) Express $\ln (6)-\ln (10)$ as a single logarithm.
5) Give the value of $\ln (25)$ accurate to 3 decimal places.
6) Express $2 \log (3)+\log (7)$ as a single logarithm.
7) $\log _{3}(27)+\log _{5}(1)-\log _{2}(8)=$ \qquad
8) Simplify $5 \log _{2}(4)-\log _{2}(16)$
9) Write $\log _{10}(42)$ in terms of the function In.
10) Find a numerical approximation for $\log _{2} 15$ correct to 3 decimal places.
11) Express $a \log b-c \log d+b \log a$ as a single logarithm.
12) Evaluate $10^{\log _{10} 53}$ (challenge question)

Answers

1) 1
2) 6
3) a
4) 2
5) $\ln \left(\frac{3}{5}\right)$
6) $\frac{\ln (42)}{\ln (10)}$
7) 3.91
8) 3.219
9) $\log (63)$
10) 0
11) $\log \frac{b^{a} a^{b}}{d^{c}}$
12) 53

Graphing log functions

$y=\log _{a}(x)$ is a reflection of the exponential graph in the line $y=x$

The x-intercept is 1 .
The graph is asymptotic to the y-axis.

A table of x and y values can be used to graph the function

Recall $\log _{b} b=1$ for all positive b. This should allow you to find a point on the graph. Also recall that $\log _{b}\left(b^{n}\right)=n$ and so this will allow you to find as many points as you wish. These points along with an x intercept and a general idea of the shape of a logarithm graph will help you graph the log functions.

Exercises

Graph
(a) $y=\log _{2} x$
(b) $y=2 \log _{3} x$
(c) $y=1+\log _{3} x$

Solving log equations

Examples

1. Solve $\log _{3} 81=x$

$$
\begin{aligned}
& 3^{x}=81 \\
& 3^{x}=3^{4} \\
& x=4
\end{aligned}
$$

2. Solve $\quad \log _{2}(4 x)=8$

$$
\begin{aligned}
& \log _{2} 4+\log _{2} x=8 \quad \text { (using log rule A) } \\
& 2+\log _{2} x=8 \\
& \log _{2} x=6 \\
& x=2^{6}=64
\end{aligned}
$$

3. Solve $\quad \log _{3}\left(\frac{x}{27}\right)=-1 \quad$ (using log rule B)

$$
\log _{3} x-\log _{3} 27=-1
$$

$$
\log _{3} x-3=-1
$$

$$
\log _{3} x=2
$$

$$
x=3^{2}=9
$$

Exercises

Solve the following equations for x

1) $\log _{5}(x)=2$
2) $\log _{3}(20 x)=3$
3) $\log _{10}(4 x)=2$
4) $\log _{4}\left(\frac{x}{2}\right)=6$
5) $\log _{2}\left(\frac{2 x}{5}\right)=1$
6) $\log _{3}\left(\frac{3 x}{4}+1\right)=8$
7) $\log _{x}(4)=2$
8) $\log _{x}(125)=3$

Answers

1) $x=25$
2) $x=\frac{27}{20}$
3) $x=25$
4) $x=8192$
5) $x=5$
6) $x=8746 \frac{2}{3}$
7) $x=2$
8) $x=5$
