Scientific notation, significant figures and rounding

Scientific or Standard Notation is best used to express very large or very small numbers in a compact, easy to read form, but can be used on any numbers.

Simply, the basic format of the notation is

where " a " is always a number between 1 and 10

10^{n}indicates the magnitude or size of the number.

$10^{5}=10 \times 10 \times 10 \times 10 \times 10$ or 100000	(1 and 5 zeros)
$10^{3}=10 \times 10 \times 10$ or 1000	(1 and 3 zeros)
$10^{8}=10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$ or 100000000 (1 and 8 zeros)	

SN makes it is easy to compare sizes of numbers. Compare magnitude (\mathbf{n}) FIRST
2.3×10^{6} is bigger than 8.97×10^{5} since the index $6>5$
6.7×10^{6} is bigger than 5.2×10^{6} with the same index of 6 , compare 6.7 and 5.2

a
indicates the accuracy or precision of the number. It is determined by the number of Significant Figures
3.11 is more accurate than 3.1 and 5.6027 is more accurate than 47

- In general the more digits the number has the more accurate or precise the measurement.
- Significant figures are different to decimal places
- Non-zero digits are significant
- The digit zero is ONLY significant if contained between non-zero digits or it is after the decimal point, at the end of a number

eg			
$\underline{3.11}$	$(3 \mathrm{sf})$	0.00005621	$(4 \mathrm{sf})$
$\underline{\underline{3.1}}$	$(2 \mathrm{sf})$	$0 . \underline{8}$	$(1 \mathrm{sf})$
$\underline{\underline{5.6027}}$	$(5 \mathrm{sf})$	$\underline{6701000}$	$(4 \mathrm{sf})$
$\underline{47}$	$(2 \mathrm{sf})$	$0.00 \underline{5}$	$(3 \mathrm{sf})$

More examples at

http://www.purplemath.com/modules/rounding2.htm

Rounding

Numbers are rounded for many reasons including

- Avoiding false precision eg 3.647382 mm
- Estimation required rather than precision
- Convenience

When rounding, the last retained digit rounds up only if the digit immediately following is 5 or greater.

Lets look at the number 18.60235

Precision	Significant figures	Decimal places
5	18.602	18.60235
4	18.60	18.6024 (rounded up)
3	18.6	18.602
2	19 (rounded up)	18.60
1	20 (rounded up)	18.6
0	n/a	19 (rounded up)

Tip - be clear on whether you are rounding according to the number of decimal places or the number of significant figures

Converting from scientific notation

Examples

1) $\quad 3.4 \times 10^{9}$

This form tells us it is a big number and makes it easy to compare to other big numbers $3.4 \times 10^{9}=3.4 \times 1000000000 \quad\left(10^{9}\right.$ indicates the magnitude or size of the number)
$\times 1000000000$ means the decimal point moves 9 places to make the number 3.4 bigger $=3400000000 \longleftarrow$ the decimal point is now here and not usually written

9 places - ' 4 ' takes one place then fill with 8 zeros to the decimal point
2) 7.85×10^{3}

Well $7.85 \times 10^{3}=7.85 \times 1000$ and $\times 1000$ means the decimal point moves 3 places to make the number 7.85 bigger
$=7850$
3 places - ' 85 ' takes 2 places then fill with one zero

$6.7 \times 10^{6}=6700000$	(move 6 pls, 1 place then fill $5 \times 0^{\prime} \mathrm{s}$)
$6.7421 \times 10^{6}=6742100$	(move 6 pls, 4 places then fill $2 \times 0^{\prime} s$)
$1.364 \times 10^{8}=136400000$	(move 8 pls, 3 places then fill $5 \times 0^{\prime}$ s)
$7.34 \times 10^{4}=73400$	(move 4 pls, 2 places then fill $2 \times 0^{\prime} \mathrm{s}$)

3) 4.72×10^{-8}

This form tells us it is a small number as the index is negative
$4.72 \times 10^{-8}=4.72 \div 100000000$

The negative index means divide by 10^{8}
$\div 100000000$ means the decimal point moves 8 places to make the number 4.72 smaller
$=0.0000000472$
8 places - ' 4 ' takes one place then fill with 7 zeros to the decimal point

4)

Lets look at some more numbers in SN and convert them back into decimal numbers
$7.85 \times 10^{-3}=7.85 \div 1000$
$\div 1000$ means the decimal point moves 3 places to make the number 7.85 smaller

$$
=0.00785
$$

3 places - ' 7 ' takes 1 place then fill with 2 zeros
$6.7 \times 10^{-6}=0.0000067$
$6.7421 \times 10^{-6}=0.0000067421$
$1.364 \times 10^{-8}=0.00000001364$
$7.34 \times 10^{-4}=0.000734$
(move 6 pls, 1 place then fill 5×0 's)
(move 6 pls, 1 place then fill 5×0 's)
(move 8 pls, 1 place then fill 7×0 's)
(move 4 pls, 1 place then fill $3 \times 0^{\prime} \mathrm{s}$)

On your calculator

$\operatorname{EXP} \quad 10^{x}$

Look for the <EXP> or <10n> buttons which can be used to enter numbers in scientific notation directly into your calculator.
eg 2.31 EXP 6 displays as 2310000 or 2.31×10^{6} on your calculator

Converting to scientific notation

Count the number of places or digits between the decimal point and where the decimal point needs to be in order to create a number between 1 and 10

Examples

1) 85312000

The decimal point is at the end of this number (as is the case for all whole numbers). We need a number between 1 and 10 , given the number above we require 8.5312 , this requires the decimal point to move 7 places or digits.

So we write $85312000=8.5312 \times 10^{7}$
(note we had a big number and so we have a positive index)
2) 0.0312
3.12 is the number between 1 and 10 we require for scientific notation. This requires moving the decimal point 2 places or digits.
$0.0312=3.12 \times 10^{-2}$
(note we had a small number and so we have a negative index)
3) $780=7.8 \times 10^{2}$
4) $470000000000=4.7 \times 10^{11}$
5) $\quad 0.00000002=2 \times 10^{-8}$
6) $\quad 0.0009066=9.066 \times 10^{-4}$

Exercises

- Be careful to ensure whether to use a negative or positive index

1 Where possible, round the following to
I. 3 significant figures
II. 2 decimal places
a 56210233
f 9.2917
k 4006.283
b 0.00052834
g 384.728
l 86254000
c 176.25
h 1.0009
m 0.566666
d 13.8816
I 0.0203
n 34000
e 0.4625
j 9738.8925
o 0.005006

2 Express the following as decimal numbers
a 8.71×10^{6}
f 6.39×10^{-6}
k 5.017×10^{-8}
b 5.2478×10^{4}
g 4.7115×10^{3}
l 3.7×10^{-5}
c 8.04×10^{5}
h 3.22×10^{-2}
m 1.6×10^{2}
d 8.32158×10^{-4}
l 9.305×10^{5}
n 4.7×10^{0}
e 2.0×10^{-3}
j 7×10^{8}

- 6.480382×10^{4}

3 Express the following in Scientific notation (you may round to 3 sf for convenience)
a 56210233
f 9.2917
k 4006.283
b 0.00052834
g 384.728
l 86254000
c 176.25
h 1392.0009
m 0.566666
d 13.8816
I 0.0203
n 34000
e 0.4625
j 0.000097
o 0.005006

Answers

1 | 3 Sig figs / II 2 dec places

a	56200000	n / a	f	9.29	9.29	k 4010	4006.28
b	0.000528	0.00	g	385	384.73	I 86300000	n/a
c	176	176.25	h	1.00	1.00	m 0.567	0.57
d	13.9	13.88	I	0.0203	0.02	n 34000	n/a
e	0.463	0.46	j	9740	9738.89	o 0.00501	0.01

2
$\begin{array}{llll}\text { a } 8710000 & \text { f } 0.00000639 & k .00000005017\end{array}$
b 52478
g 4711.5
l 0.000037
c 804000
h 0.0322
m 160
d 0.000832158
I 930500
n 4.7
e 0.002
j 700000000
o 64803.82

3
a 5.6210233×10^{7}
f 9.2917×10^{0}
k 4.006283×10^{3}
b 5.2834×10^{-4}
g 3.84728×10^{2}
l 8.6254×10^{7}
c 1.7625×10^{2}
h 1.3920009×10^{3}
m 5.66666×10^{-1}
d 1.38816×10^{1}
l 2.03×10^{-2}
n 3.4×10^{4}
e 4.625×10^{-1}
j 9.7×10^{-5}
o 5.006×10^{-3}

