Scientific notation, significant figures and rounding

Scientific or Standard Notation is best used to express very large or very small numbers in a compact, easy to read form, but can be used on any numbers.

Simply, the basic format of the notation is

where "a" is always a number between 1 and 10

10^{*n*}

indicates the magnitude or size of the number.

SN makes it is easy to compare sizes of numbers. **Compare magnitude (n) FIRST** 2.3×10^6 is bigger than 8.97×10^5 since the index 6 > 5 6.7×10^6 is bigger than 5.2×10^6 with the same index of 6, compare 6.7 and 5.2

U indicates the **accuracy or precision** of the number. It is determined by the number of **Significant Figures**

3.11 is more accurate than 3.1 and 5.6027 is more accurate than 47

- In general the more digits the number has the more accurate or precise the measurement.
- Significant figures are different to decimal places
- Non-zero digits are significant
- The digit zero is ONLY significant if contained between non-zero digits or it is after the decimal point, at the end of a number

eg			
<u>3.11</u>	(3 sf)	0.0000 <u>5621</u>	(4 sf)
<u>3.1</u>	(2 sf)	0. <u>8</u>	(1 sf)
<u>5.6027</u>	(5 sf)	<u>6701</u> 000	(4 sf)
<u>47</u>	(2 sf)	0.00 <u>350</u>	(3 sf)

More examples at http://www.purplemath.com/modules/rounding2.htm

Rounding

Numbers are rounded for many reasons including

- Avoiding false precision eg 3.647382 mm
- Estimation required rather than precision
- Convenience

When rounding, the last retained digit rounds up only if the digit immediately following is 5 or greater.

Lets look at the number 18.60235

Precision	Significant figures	Decimal places
5	18.602	18.60235
4	18.60	18.602 4 (rounded up)
3	18.6	18.602
2	1 9 (rounded up)	18.60
1	2 0 (rounded up)	18.6
0	n/a	1 9 (rounded up)

Tip – be clear on whether you are rounding according to the number of decimal places or the number of significant figures

Converting from scientific notation

Examples

1) 3.4×10^9

This form tells us it is a big number and makes it easy to compare to other big numbers $3.4 \times 10^9 = 3.4 \times 1000\ 000\ 000\ (10^9\ indicates the magnitude or size of the number)$

×1 000 000 000 means the decimal point moves 9 places to make the number 3.4 bigger = 3 400 000 000 ← the decimal point is now here and not usually written

9 places - '4' takes one place then fill with 8 zeros to the decimal point

2) 7.85×10^3

Well $7.85 \times 10^3 = 7.85 \times 1000$ and x1000 means the decimal point moves 3 places to make the number 7.85 bigger

= 7 850

3 places - '85' takes 2 places then fill with one zero

$6.7 \times 10^6 = 6\ 700\ 000$	(move 6 pls, 1 place then fill 5 x 0's)
$6.7421 \times 10^6 = 6\ 742\ 100$	(move 6 pls, 4 places then fill 2 x 0's)
$1.364 \times 10^8 = 136\ 400\ 000$	(move 8 pls, 3 places then fill 5 x 0's)
$7.34 \times 10^4 = 73\ 400$	(move 4 pls, 2 places then fill 2 x 0's)

3) 4.72×10^{-8}

This form tells us it is a small number as the index is negative $4.72 \times 10^{-8} = 4.72 \div 100\ 000\ 000$

The negative index means divide by 10⁸

 \div 100 000 000 means the decimal point moves 8 places to make the number 4.72 smaller = 0.000 000 0472

8 places - '4' takes one place then fill with 7 zeros to the decimal point

4)

Lets look at some more numbers in SN and convert them back into decimal numbers $7.85 \times 10^{^{-3}} = 7.85 \div 1000$

 \div 1000 means the decimal point moves 3 places to make the number 7.85 smaller

3 places - '7' takes 1 place then fill with 2 zeros $6.7 \times 10^{-6} = 0.000\ 006\ 7$ $6.7421 \times 10^{-6} = 0.000\ 006\ 742\ 1$ $1.364 \times 10^{-8} = 0.000\ 000\ 013\ 64$ $7.34 \times 10^{-4} = 0.000\ 734$

On your calculator

Look for the <EXP> or <10ⁿ> buttons which can be used to enter numbers in scientific notation directly into your calculator.

eg 2.31 EXP 6 displays as 2 310 000 or 2.31×10^6 on your calculator

Converting to scientific notation

Count the number of places or digits between the decimal point and where the decimal point needs to be in order to create a number between 1 and 10

Examples

1) 85 312 000

The decimal point is at the end of this number (as is the case for all whole numbers). We need a number between 1 and 10, given the number above we require 8.5312, this requires the decimal point to move 7 places or digits.

So we write 85 312 000 = 8.5312×10^7

(note we had a big number and so we have a positive index)

2) 0.0312

3.12 is the number between 1 and 10 we require for scientific notation. This requires moving the decimal point 2 places or digits.

 $0.0312 = 3.12 \times 10^{-2}$

(note we had a small number and so we have a negative index)

- **3)** 780 = 7.8×10^2
- **4)** 470 000 000 000 = 4.7 x 10¹¹
- 5) $0.000\ 000\ 02 = 2 \times 10^{-8}$
- 6) 0.000 906 6 = 9.066×10^{-4}

Exercises

- Be careful to ensure whether to use a negative or positive index
- 1 Where possible, round the following to
 - I. 3 significant figures
 - II. 2 decimal places

а	56210233	f	9.2917	k	4006.283
b	0.00052834	g	384.728	I	86254000
С	176.25	h	1.0009	m	0.566666
d	13.8816	L	0.0203	n	34000
е	0.4625	j	9738.8925	0	0.005006

2 Express the following as decimal numbers

			<i>c</i>		•
а	8.71 x 10 ⁶	f	6.39 x 10 ⁻⁶	k	5.017 x 10 ⁻⁸
b	5.2478 x 10 ⁴	g	4.7115 x 10 ³	L	3.7 x 10 ⁻⁵
С	8.04 x 10 ⁵	h	3.22 x 10 ⁻²	m	1.6 x 10 ²
d	8.32158 x 10 ⁻⁴	L	9.305 x 10⁵	n	4.7 x 10 ⁰
е	2.0 x 10 ⁻³	j	7 x 10 ⁸	0	6.480382×10^4

3 Express the following in Scientific notation (you may round to 3 sf for convenience)

а	56210233	f	9.2917	k	4006.283
b	0.00052834	g	384.728	L	86254000
С	176.25	h	1392.0009	m	0.566666
d	13.8816	L	0.0203	n	34000
е	0.4625	j	0.000097	0	0.005006

Answers

1	I	3 Sig figs /	II 2 dec place	es						
	а	56200000	n/a	f	9.29	9.29	k	4010	4006.28	
	b	0.000528	0.00	g	385	384.73	Τ	86300000	n/a	
	С	176	176.25	h	1.00	1.00	m	0.567	0.57	
	d	13.9	13.88	Т	0.0203	0.02	n	34000	n/a	
	е	0.463	0.46	j	9740	9738.89	0	0.00501	0.01	
2	а	8 710 000		f	0.000 006 39 4 711.5		k	0.000 000 05	50 17	
	b	52 478		g			l 0.000 037			
	С	804 000		h	0.0322		m	160		
	d	0.000 832 1	58	Т	930 500		n 4.7			
	е	0.002		j	700 000 000)	0	64 803.82		
3	а	5.6210233 x		f	9.2917 x 10 ⁰		k	4.006283 x 1		
	b	5.2834 x 10⁻	4	g	3.84728 x 10	\mathbf{D}^2	Ι	8.6254 x 10 ⁷		
	С	1.7625 x 10 ²	2	h	1.3920009 x	10 ³	m	5.66666 x 10)-1	
	d	1.38816 x 10	D^1	Т	2.03 x 10 ⁻²		n	3.4 x 10 ⁴		
	е	4.625 x 10 ⁻¹		j	9.7 x 10 ⁻⁵		0	5.006 x 10 ⁻³		

