

COMPETITIVE ADVANTAGE

- Relies on chemical looping air separation as opposed to cryogenic air separation or membrane-based technology
- Its energy footprint is 0.04 kWh/m3, which is approximately 10 per cent of the energy footprint of the conventional cryogenic-based technologies

can be containerised to meet the oxygen

demand of Australian Defence Force

field hospitals and/or hospital ships.

- Lightweight and compact design due to small energy footprints and the use of chemical loops
- Eliminates the need for transporting oxygen bottles

SUCCESSFUL APPLICATIONS OF RESEARCH

- Field trials of a containerised CLAS unit under realistic conditions
- Implementation of the project outcomes into the design of the future field equipment for Australian Defence Force medical units

PARTNERS

- · Infratech Industries
- NSW Government

IMPACT

The outcome of this project will enable the Australian
 Defence Force to overcome some of the logistical challenges
 associated with transporting large numbers of oxygen
 bottles to field hospitals or carrying them on hospital ships

CAPABILITIES AND FACILITIES

- Chemical looping research laboratories
- Several small-scale and pilot-scale CLAS prototypes
- · Design capabilities and testing facilities
- An extensive array of instruments for reaction kinetics studies (e.g. thermalgravimetric analyser (TGA), pressurised thermogravimetric analyser (PTGA), two-stage combustion (TSC), drop tube furnace, multi-zone muffle furnaces)