Straight lines and linear equations

Gradients

A gradient is the slope of the line and mathematically represents a rate of change.
The steeper the slope, the larger the number. If a line is flat, it has no slope or slope $=0$.
A gradient is negative if it runs in the same direction as the sloping line in capital N

Positive or increasing slope (not negative)

Negative or decreasing slope

Finding the gradient

1. From a graph

$$
\text { gradient }=[\text { sign }+/-] \frac{\text { rise }}{\text { run }}
$$

Create any right angle triangle which makes it easy to find the point coordinates on the line. Use the point coordinates to work out the triangle side lengths for the rise and run.

$$
\text { gradient }=[+] \frac{\text { rise }}{\text { run }}=\frac{2}{1}=2 \quad \text { gradient }=[-] \frac{\text { rise }}{\text { run }}=-\frac{2}{3}
$$

2. Given $\mathbf{2}$ points

$$
\text { gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Find the gradient of the line joining the points $(2,3)$ and $(4,-2)$

$$
\begin{array}{ll}
\left(x_{1}, y_{1}\right) \\
(2,3)
\end{array} \text { and }(4,-2) \quad \text { gradient }=\frac{\left.x_{2}, y_{2}\right)}{y_{2}-y_{1}} \frac{-2-3}{x_{2}-x_{1}}=\frac{5}{4-2}=-\frac{5}{2}
$$

3. From the line equation - more details on the line equation follow

Make sure the equation has y as the subject. The gradient is always the number next to the x

$$
y=3 x-5 \quad \text { Gradient }=3 \quad y=-\frac{2}{3} x+4 \quad \text { Gradient }=-\frac{2}{3}
$$

Drawing a graph

1. Box method - choose easy x-values

$$
y=3 x+2
$$

x	0	1	2
y			

When $x=0 \quad y=3 \times 0+2=2$
When $x=1 \quad y=3 \times 1+2=5$
When $x=2 \quad y=3 \times 2+2=8$

x	0	1	2
y	2	5	8

Plot the points and join them to form the line.
2. Using the y-intercept and x-intercept

$$
y-x=2
$$

To find the y-intercept put $x=0$

$$
y-0=2 \quad \text { so } y=2 \quad(0,2)
$$

To find the x-intercept put $y=0$

$$
0-x=2 \text { or }-x=2
$$

$$
\begin{equation*}
\text { So } \quad x=-2 \tag{-2,0}
\end{equation*}
$$

Plot the points and join them to form the line.

3. Using gradient and y-intercept

$$
\text { Graph } \quad y=\frac{3}{4} x-1
$$

Mark on the y-intercept at -1
Then draw the triangle to find a second point to join up.

$$
\text { gradient }=\frac{3}{4}=\frac{\text { rise }}{\text { run }}
$$

Gradient - intercept form of equation, note that y always needs to be the subject $\underset{\text { Gradient }}{\boldsymbol{y}}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}_{\boldsymbol{r}^{\prime}} \underset{y \text {-intercept }}{ }$

Finding the equation of a line

1. Given the gradient and the \boldsymbol{y}-intercept and using $\boldsymbol{y}=\boldsymbol{m x}+b$

Substitute the values into the equation
Find the equation of the line with a gradient of 3 and y-intercept of -1 ?

$$
\begin{aligned}
& \boldsymbol{y}=m \boldsymbol{x}+b \\
& \text { We know that } m=3 \text { and } b=-1 \\
& \text { So } \quad y=3 x-1
\end{aligned}
$$

2. Given the gradient and a point on the line and using $\boldsymbol{y}=\boldsymbol{m x}+b$

Find the equation of the line with gradient $\frac{2}{3}$ and passing through $(6,1)$
We know that $m=\frac{2}{3}$ so put that into our equation $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{b}$

$$
\begin{equation*}
\text { It becomes } y=\frac{2}{3} x+b \tag{x,y}
\end{equation*}
$$

Now substitute in the x and y values from our point $(6,1)$ to obtain the value of b

$$
\begin{aligned}
& 1=\frac{2}{3} \times 6+b \\
& 1=4+b \\
& b=-3
\end{aligned}
$$

Put this into our equation and it becomes

$$
y=\frac{2}{3} x-3
$$

3. Using the coordinates of two points

Find the equation of the line through the points $(1,5)$ and $(2,3)$
First find the gradient using the formula

$$
\text { gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-5}{2-1}=-\frac{2}{1}=-2
$$

The question is now like 2. above
Put the gradient into the line equation $\boldsymbol{y}=\boldsymbol{m x}+b$

$$
y=-2 x+b \quad(x, y)
$$

Substitute the x and y values from a point $(2,3)$ to find the value of b
(You could use either point for this step.)

$$
\begin{aligned}
& 3=-2 \times 2+b \\
& 3=-4+b \\
& b=7
\end{aligned}
$$

Put this into our equation.
The equation is $\quad y=-2 x+7$
4. Given a graph and using $\boldsymbol{y}=\boldsymbol{m x}+b$

Find the equation of the line drawn.
Locate the y -intercept. $\quad b=2$
Draw on a triangle to find the gradient

$$
m=-\frac{r i s e}{r u n}-\frac{2}{3}
$$

Put the gradient and y -intercept in the equation

$$
\begin{aligned}
& y=m x+b \\
& y=-\frac{2}{3} x+2
\end{aligned}
$$

Is a point on a line?

- Is the point $(2,-3)$ on the line

$$
y=-3 x+5 ?
$$

Substitute the x and y values into the equation and see if it satisfies the line equation.

$$
\begin{aligned}
& -3=-3 \times 2+5 \\
& -3=-6+5 \quad \text { No, it does not satisfy the equation } \\
& -3=-1 \quad
\end{aligned}
$$

The point (2,-3) does not lie on the line $y=-3 x+5$
(x, y)

- Is the point $(1,2)$ on the line

$$
y=-3 x+5 ?
$$

Substitute the x and y value into the equation

$$
\begin{aligned}
& 2=-3 \times 1+5 \\
& 2=-3+5 \\
& 2=2 \quad \text { True, the values on the } \mathrm{LHS}=\text { RHS }
\end{aligned}
$$

So the point $(1,2)$ is on the line $y=-3 x+5$

Write the equation in gradient-intercept form

Use algebra techniques to get the y term on the left on its own.

- Write $4 x+3 y-16=0$ (equation in general from) in gradient-intercept form.

$$
\begin{aligned}
& 4 x+3 y-16=0 \quad \text { leave the } 3 y \text { term alone and }-4 x \text { both sides } \\
& 3 y-16=-4 x \quad+16 \text { both sides } \\
& 3 y=-4 x+16 \quad \div 3 \text { both sides } \\
& \text { The equation in gradient - intercept from is } \\
& y=-\frac{4}{3} x+\frac{16}{3}
\end{aligned}
$$

