## MATHS AND STATS

## Logarithms

What do we mean when we ask, "what is $\log _{2} 16$ equal to"?
We are asking what power 2 must be raised to in order to get 16 .
Another way of writing this is: If $2^{x}=16$, what is $x$ ?
Since $2^{4}=16$, we have $\log _{2} 16=4$.

$$
\log _{\mathrm{a}}(b)=c \quad \text { is equivalent to } \quad a^{c}=b
$$

In general, $\log _{a}(b)=c$ means that $a^{c}=b$. The $a$ in this example is called the 'base' of the log.

## Example

Evaluate $\log _{3}(9) . \quad$ Since $3^{2}=9$, we have that $\log _{3}(9)=2$

## Exercises A

1) Rewrite $x^{y}=a$ in log form (using the statement in the shaded rectangle).
2) Rewrite $\log _{p}(r)=t$ in index form
3) Determine the following
a. $\log _{4}(16)=$
b. $\log _{10}(1000)=$
c. $\log _{6}(36)=$
d. $\log _{2}(16)=$
e. $\log _{3}(27)=$
f. $\log _{5}(125)=$
g. $\log _{2}(32)=$
h. $\log _{10}(10000)=$
i. $\quad \log _{3}\left(\frac{1}{9}\right)=$
j. $\quad \log _{10}\left(\frac{1}{1000}\right)=$
k. $\log _{3}(27)+\log _{5}(1)-\log _{2}(8)$.

Here are some rules for working with logarithms. Notice that the base doesn't change in any of these rules. The main rule we will need in ACFI is (C).

$$
\begin{align*}
& \log _{a}(p q)=\log _{a}(p)+\log _{a}(q)  \tag{A}\\
& \log _{a}\left(\frac{p}{q}\right)=\log _{a}(p)-\log _{a}(q)  \tag{B}\\
& \log _{a}\left(p^{q}\right)=q \times \log _{a}(p) \tag{C}
\end{align*}
$$

$$
\log _{\mathrm{a}}(a)=1 \quad \text { and } \quad \log _{\mathrm{a}}(1)=0
$$

## Example

Use a log law to rewrite $\log _{10}\left(41^{x / 2}\right)$ without a power

$$
\log _{10}\left(41^{x / 2}\right)=\frac{x}{2} \log _{10}(41) \quad \text { (using rule C) }
$$

## Exercises B

1) Evaluate $\log _{10}(10)$
2) Evaluate $\log _{2}(1)$
3) Evaluate $\log _{3}(3)$
4) Evaluate $\log _{7}(1)$
5) Rewrite $\log _{b}\left(b^{a}\right)$ without a power
6) Rewrite $\log _{4}\left(4^{10}\right)$ without a power
7) Rewrite $\log _{10}\left(0.03^{n}\right)$ without a power
8) Rewrite $\log _{10}\left(1.12^{n / 3}\right)$ without a power
9) Give the value of $\log _{10}(25)$ accurate to 3 decimal places (using a calculator, the "log" button is specifically a log base 10 button).
10) Without a calculator, determine the first digit of $\log _{3}(20)$

## Answers A

1) $\log _{x}(a)=y$
2) $p^{t}=r$
3) 

a) $\log _{4}(16)=2$
b) $\log _{10}(1000)=3$
c) $\log _{6}(36)=2$
d) $\log _{2}(16)=4$
e) $\log _{3}(27)=3$
f) $\log _{5}(125)=3$
g) $\log _{2}(32)=5$
h) $\log _{10}(10000)=4$
i) $\log _{3}\left(\frac{1}{9}\right)=-2$
j) $\log _{10}\left(\frac{1}{1000}\right)=-3$
k) 0

## Answers B

1) 1
2) 0
3) 1
4) 0
5) $a$
6) 10
7) $n \log _{10}(0.03)$
8) $\frac{n}{3} \log _{10}(1.12)$
9) 1.398
10) 2
