

Logarithms

What do we mean when we ask, "what is $\log_2 16$ equal to"?

We are asking what power 2 must be raised to in order to get 16. Another way of writing this is: If $2^x = 16$, what is x? Since $2^4 = 16$, we have $\log_2 16 = 4$.

 $\log_a(b) = c$ is equivalent to $a^c = b$

In general, $\log_a(b) = c$ means that $a^c = b$. The *a* in this example is called the 'base' of the log.

Example

Evaluate $\log_3(9)$. Since $3^2 = 9$, we have that $\log_3(9) = 2$

Exercises A

- 1) Rewrite $x^{y} = a$ in log form (using the statement in the shaded rectangle).
- 2) Rewrite $\log_p(r) = t$ in index form
- 3) Determine the following
 - a. $\log_4(16) =$ g. $\log_2(32) =$
 - b. $\log_{10}(1000) =$ h. $\log_{10}(10000) =$
 - c. $\log_6(36) =$ i. $\log_3(\frac{1}{9}) =$
 - d. $\log_2(16) =$ j. $\log_{10}\left(\frac{1}{1000}\right) =$
 - e. $\log_3(27) =$
 - f. $\log_5(125) =$

k. $\log_3(27) + \log_5(1) - \log_2(8)$.

Here are some rules for working with logarithms. Notice that the base doesn't change in any of these rules. The main rule we will need in ACFI is (C).

$$\log_{a}(pq) = \log_{a}(p) + \log_{a}(q) \qquad (A)$$
$$\log_{a}\left(\frac{p}{q}\right) = \log_{a}(p) - \log_{a}(q) \qquad (B)$$
$$\log_{a}(p^{q}) = q \times \log_{a}(p) \qquad (C)$$

$\log_{a}(a) = 1$	and	$\log_{a}(1) = 0$	
Ou ()		Ou V	

Example

Use a log law to rewrite $log_{10}(41^{x/2})$ without a power

$$\log_{10}(41^{x/2}) = \frac{x}{2}\log_{10}(41)$$
 (using rule C)

Exercises B

- 1) Evaluate $\log_{10}(10)$
- 2) Evaluate $\log_2(1)$
- 3) Evaluate $\log_3(3)$
- 4) Evaluate $\log_7(1)$
- 5) Rewrite $\log_b(b^a)$ without a power
- 6) Rewrite $\log_4(4^{10})$ without a power
- 7) Rewrite $\log_{10}(0.03^n)$ without a power
- 8) Rewrite $\log_{10}(1.12^{n/3})$ without a power
- 9) Give the value of $\log_{10}(25)$ accurate to 3 decimal places (using a calculator, the "log" button is specifically a log base 10 button).
- 10) Without a calculator, determine the first digit of $\log_3(20)$

3

Answers A 1) $\log_x (a) = y$ 2) $p^t = r$ 3) a) $\log_4(16) = 2$ b) $\log_{10}(1000) = 3$ c) $\log_6(36) = 2$ d) $\log_2(16) = 4$ e) $\log_3(27) = 3$ f) $\log_5(125) = 3$

g) $\log_2(32) = 5$ h) $\log_{10}(10\ 000) = 4$ i) $\log_3\left(\frac{1}{9}\right) = -2$ j) $\log_{10}\left(\frac{1}{1000}\right) = -3$

k) 0

Answers B

- 1) 1
- 2) 0
- 3) 1
 4) 0
- 4) 0 5) a

6) 10 7) $n \log_{10}(0.03)$ 8) $\frac{n}{3} \log_{10}(1.12)$ 9) 1.398 10) 2

