Absolute Values

An absolute value is the magnitude of a value without caring about the direction. The result of an absolute value cannot be negative. It can also be thought of as a distance. Absolute values are written as a pair of vertical lines which behave like brackets, taking the positive value of the result of what is inside them. For example:

$$
\begin{aligned}
|4| & =4 \\
|-5| & =5 \\
|10-7| & =3 \\
|7-10| & =3
\end{aligned}
$$

Both of these last two examples give the distance between 7 and 10 .

Note that it is still possible to get a negative number as an answer to a question involving absolute values.

$$
\begin{aligned}
|-2|-|-5| & =2-5 \\
& =-3
\end{aligned}
$$

In general:

- If the expression inside the absolute value lines is positive, the expression is not changed.
- If the expression inside the absolute value lines is negative, then we take the negative of the expression (as the negative of a negative is positive)

Sometimes this means a question with absolute values may have two solutions:

Consider

$$
|5-x|=6
$$

If $5-x$ is positive this becomes

$$
\begin{aligned}
5-x & =6 \\
-x & =6-5 \\
-x & =1 \\
x & =-1
\end{aligned}
$$

If $5-x$ is negative this becomes

$$
\begin{aligned}
-(5-x) & =6 \\
-5+x & =6 \\
x & =6+5 \\
x & =11
\end{aligned}
$$

So $x=-1$ or $x=11$. You can check these solutions by substituting them into the original equation. You may also notice that 6 is the distance between 5 and x when $x=-1$ or when $x=11$.

A question may have no solutions, as well:

$$
|4+x|=-2
$$

Since the result of an absolute value cannot be negative, it cannot equal -2 no matter what the x is.

Graphs involving absolute values

Graphs involving absolute values usually have immediate changes of direction, appearing to "bounce" off a line at points where an absolute value evaluates to 0 .

Examples:

$y=|x+2|$

$y=3+|5-x|$

$y=\left|x^{2}-1\right|$

Exercises

1. Find
$|1-9|$
2. Evaluate
$|-4|-|2-7|$
3. Evaluate

$$
5 \times|-7+1|-2
$$

4. For what two values of x does $|x+3|=5$
5. Simplify

$$
|a-b|-3 \times|b-a|
$$

6. Draw the graph of
$y=|2 x+2|-1$

Answers

1. 8
2. -1
3. 28
4. $x=2$ or $x=-8$
5. $-2 \times|b-a|$

$$
=\left\{\begin{array}{l}
2 a-2 b \text { if } a<b \\
2 b-2 a \text { if } a>b
\end{array}\right.
$$

6.

$$
y=|2 x+2|-1
$$

