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Abstract

In this short paper we summarise our work [5] on training first-order re-
current neural networkR{Ns) on thea™b" ™ language prediction task.

We highlight the differences between incremental and non-incremental
learning — with respect to success rate, generalisation performance, and
characteristics of hidden unit activation.

1 Background

In 1999 a pilot study [4] demonstrated for the first time that simple recurrent networks
(SRNs) [7] can learn to predict strings from subsets of the mildly context-sensitive lan-
guage{a"b™c™; n > 1}. The important aspect of this type of result [5, 23, 20, 16, 15] is
that very simply structured recurrent nets daarn to predict fairly complex formal lan-
guages [6]. The question of representation or how to handcraft such a network is by now
well understood [10, 11, 19, 18]. The training algorithm employed in our studies [4, 5]
was evolutionary hill climbing [14] combined with a special version of data incremental
learning [8, 3]. Later studies [1, 2] were able to obtain similar results with backpropaga-
tion through time 8P 7T) and second order sequential cascaded networks, although training
with BPTT of first order recurrent networks was not successful. A selection of studies of
training on non-regular languages suchuas™ anda™b™c™ was reviewed in [22, 2]. One
common characteristic of all these studies was limited generalization ability — the networks
generalised only a few steps ahead with respect to the depth of the strings. It was sug-
gested [21] that the limited generalisation ability could model human performance when
processing center embedded clauses. Better generalisation, close to the performance of
handcrafted nets [10], could be learned with more complicated network structures such as
RAAM networks [12] or.sTM networks [9, 13, 17]. In the present paper we focus on the
training of first-order recurrent networks, and emphasize the differences in results obtained
with incremental and non-incremental evolutionary learning [5].

2 Task and methods

The data consisted of sequences of 30 randomly concatenated strings from the context-
sensitive languagfab™c™; n > 1}. The network has to predict, for each symbol, the next



symbol in the sequence [7]. Each symbol was encoded as a veetpd,1,1),b = (1,-1,1)

or c = (1,1,-1), respectively. The symbols of the sequence were fed one at a time into the
three dimensional input layer (11-13) of tterRNSCneural network (see Figure 1). Each
output unit (O1-03) was assigned to one of the three symhdisor ¢ and the unit with

the highest activation determined the predicted symbol.

The training algorithm was evolutionary
hillclimbing [14] which is also known un-
der the name (1+1)—Evolution Strategy. It
was combined witldata jugglingwhich is

a method that randomly changes the order
of the strings in the training sequence after
each epoch during training [5].

Data incremental learning [8, 3] for recur-
rent neural networks is based on the as-
sumption that it is better to train a net-
Figure 1: A srRNsScis a SRN a la ElI- work on simple data initially and gradu-
man [7] with additional shortcut links con-ally increase the difficulty of the data as
necting each input unit (11-13) to each outputhe training progresses, rather than train-
unit (01-03) [5]. ing on the full range of data from the very
beginning. In the context of the™v™c”
prediction task — since the strings are naturally ordered by their depthata-incremental
learningwas implemented by allowing only small strings at first and then increasing the
maximum allowable depth once the strings of the current training set had been successfully
learned. A comparison was made witlm@n-incrementalpproach, in which the network
is trained on the full range of strings from the outset.

3 Summary of results

In the case of the™b™c™ prediction task witlsRNSG we obtained strong indications [5]

that incremental learning finds solutions (for stage 8) faster and with a higher success rate
(58%) than non-incremental learning (success rate 25%). However, only 30% of the suc-
cessful incrementally trained networks were able to generalise to higher stages while 60%
of the successful non-incrementally trained networks showed evidence of generalization.

Figure 2: Solution after incremental learning on stages 3-8 (left) and with non-incremen-
tal learning directly on stage 8 (right) starting from the same initial conditions.

In addition, we noticed a qualitative difference in the hidden unit activity of the resulting
solution networks — namely, incremental training was more likely to produce solutions



with monotonic trajectories, while the non-incremental solutions had trajectories which
oscillated within the symbol clusters (see Figure 2).

These different network behaviors can be distinguished empirically by counting the num-
ber of positive and negative self-weights. The higher level of generalization for the non-
incrementally trained networks concurs with earlier work for d@fé™ task [20] where it

was noted that oscillating solutions are more likely to generalize than monotonic ones.

Animated graphics showing the development of the hidden unit dynamics during evo-
lution are athttp://www.cs.newcastle.edu.au/ ~chalup/anbncn.html .

The movies show that in most cases the qualitative characteristics of the networks’ hid-
den unit activity did not change much during training.

Our hypothesis is that the incrementally trained networks find it easier to learn a monotonic
solution when presented with the short strings in the initial training set, but are then “locked
in” to this behavior and find it increasingly difficult to accommodate longer strings within
this pattern of monotonic dynamics. In contrast, the non-incrementally trained networks
take longer to find a solution initially — but generally settle on an oscillating solution, which
can more easily generalize to longer strings.
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