DEWATERING MANAGEMENT PLAN

University of Newcastle Gosford Campus, 305 Mann Street, Gosford

20232408.005 24 May 2023

Suite 3, 240-244 Pacific Highway, Charlestown, NSW 2290 Phone: +61 2 4949 5200

Dewatering Management Plan

University of Newcastle Gosford Campus, 305 Mann Street, Gosford

Kleinfelder Project: 20232408.005

Kleinfelder Document: NCA23R153933

Copyright 2023 Kleinfelder All Rights Reserved

Prepared for: University of Newcastle

University Drive, Callaghan NSW 2308 www.uon.edu.au

Prepared by: Kleinfelder Australia Pty Ltd

Suite 3, 240-244 Pacific Highway, Charlestown, NSW 2290 Phone: +61 2 4949 5200 ABN: 23 146 082 500

Document Control:

Version	Version Description	
1.0	Draft	24 May 2023
Prepared	Reviewed	Endorsed
hailffart.	AMarshall	hiller.
Phil Band	Adam Marshall	Phil Band

Only the University of Newcastle, its designated representatives or relevant statutory authorities may use this document and only for the specific purpose for which this submission was prepared. It should not be otherwise referenced without permission.

TABLE OF CONTENTS

1	INT	RODUCTION	. 1
	1.1 1.2 1.3 1.4	PROPOSED DEVELOPMENT BACKGROUND OBJECTIVES REGULATORY FRAMEWORK	.1 .2 .2 .2
2	SIT	E CHARCTERISATION	3
	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	SITE LOCATION	.3 .3 .4 .4 .5 .5
	2.7.	.1 Geotechnique 2004 and SMEC 2016	5
n	2.7.		.5
3	GR		. /
	3.1 3.2 3.3	GROUNDWATER LEVELS GROUNDWATER ASSESSMENT. ADOPTED GUIDELINES	.7 .7 .8
	3.3. 3.3.	.1 Human Health .2 Ecological	. 8
	3.4 3.5 3.6 3.7 3.8 3.9	GROUNDWATER GAUGING AND HYDROCARBON OBSERVATIONS GEOCHEMICAL PARAMETERS ANALYTICAL RESULTS GROUNDWATER GROUNDWATER ABSTRACTION BORES	.9 .9 .9 .9 10
4	DIS	CHARGE WATER QUALITY GUIDELINES	11
	4.1	ACCEPTANCE LIMITS1	11
	4.1. 4.1. 4.1.	.1 General Acceptance Limits .2 Inorganic and Organic Contaminants	11 12 12
5	DE\	WATERING CONDITIONS AND CONTROLS	14
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	ESTIMATED GROUNDWATER VOLUMES	14 15 15 15 17
6	CO	NCLUSIONS	20
7	RE	FERENCES	21

TABLES

Table 2-1: Site Details	3
Table 3-1: Groundwater Strikes During Drilling	7
Table 3-2: Groundwater Level Monitoring	7
Table 3-3: Groundwater field parameters	8
Table 4-1: General Acceptance Limits	.11
Table 4-2: Inorganic and Organic Contaminants Acceptance Limits	.12
Table 4-3: Metals Acceptance Limits	.12
Table 5-1: Groundwater Level Monitoring	.14

INTEXT FIGURES

Figure 1-1: Proposed Earthworks Plan	2
Figure 3-1: Geological Map	4

APPENDICES

Appendix A – Figures Appendix B – Borehole Logs Appendix C – Groundwater Monitoring results Appendix D – Central Coiast Council Trade Waste Acceptance Limits

1 INTRODUCTION

Kleinfelder Australia Pty Ltd (Kleinfelder) was commissioned by The University of Newcastle (UoN) to undertake an D<u>ewatering</u> Management Plan (DWMP) at 305 Mann Street, Gosford (herein referred to as the 'Site'). The Site layout is presented in **Figure 1**, **Appendix A**.

It is understood that UoN is seeking to redevelop the Site into the Central Coast Campus of the University of Newcastle. Consent is sought for the proposal as State Significant Development (SSD-47749715). The purpose of this plan is to guide the treatment and disposal of water encountered in the excavation necessary for construction of the development and to assess the impact of this water take in response a letter from DPE Water (See Section 1.2).

1.1 PROPOSED DEVELOPMENT

Kleinfelder understands that the proposed structure comprises a four-storey educational establishment building on the western portion of the site, retail, on-site parking and publicly accessible open space along the western, southern and eastern parts of the site. The building is to have an underground carpark level and therefore significant excavation of soils will be required along with the construction of retaining walls. The proposed earthworks plan is shown in

Figure 1-1 below:

Surface Analysis: Elevation Ranges				
Number	Color	Minimum Elevation (m)	Maximum Elevation (m)	Volume (m3)
1		-6.000	-4.000	38.8
2		-4.000	-2.000	691.8
3		-2.000	-1.000	925.9
4		-1.000	-0.500	678.4
5		-0.500	0.000	1084.8
6		0.000	0.500	349.4
7		0.500	1.000	3.2
8		1.000	1.500	0.0

Figure 1-1: Proposed Earthworks Plan

Anticipated earthworks volumes are cut 3,420m³ and fill 353m³, with a balance of 3067m³. It is anticipated that this material will have to be removed from site.

1.2 BACKGROUND

The University of Newcastle has submitted a State Significant Development (SSD-47749715) application for the expansion of its Gosford Campus situated at 305 Mann Street, Gosford. The following responses have been received in relation to Groundwater.

• DPE Water has requested that the proponent prepare an assessment of the dewatering activities against the 'minimal impact considerations' of the NSW Aquifer Interference Policy (AIP).

Previous investigations undertaken have identified indicators of acidic soils, within the proposed civil excavation footprint of the Development Area, exceeding the minimum 'action criteria' threshold from the NSW Acid Sulfate Soil Assessment Guidelines, 1998 ('ASSMAC'). An Acid Soil Management Plan Has been prepared by Kleinfelder to address the risks surrounding the acidic soils on site.

A Detailed Site Investigation (DSI) prepared by Kleinfelder detected minor recorded exceedances of the ANZG 95% Freshwater criteria for heavy metals (Copper, Nickel and Zinc), the PFAS NEMP 2020 Freshwater 99% limit for PFOS and the NHMRC Managing Risks in Recreational Water criteria for Benzene in the groundwater, therefore, any groundwater extracted during dewatering activities conducted during construction is not considered suitable for discharge to the stormwater network without pre-treatment. Prior approval will need to be sought, with respect to discharge quality parameters and volumes/flow rates, from the local water authority to discharge to the sewer network, or potentially, water may need to be pumped, possibly stored and treated on-site prior to discharge.

1.3 OBJECTIVES

The primary objective of this DWMP is to provide management procedures that will ensure any pumped-out groundwater discharged from site will be of an acceptable quality and complies with the requirements of the Protection of the Environment Operations Act 1997 (POEO Act 1997).

Furthermore, this DMP outlines monitoring procedures regarding the periodic measurements of estimated groundwater levels, flow and discharge volume, as well as the required measures to minimise risks of contamination, or other interference, of the local aquifer system.

Kleinfelder understands that this DMP will also form the basis for:

- The approval to enable connection and discharge to Council's sewer system; and
- The groundwater dewatering license exemption, which is to be granted by WaterNSW.

1.4 REGULATORY FRAMEWORK

The following regulatory instruments and guidelines were considered:

- Contaminated Land Management Act 1997 (the CLM Act 1997);
- Protection of the Environment Operations Act 1997 (the POEO Act 1997);
- Environmental Planning and Assessment Act 1979 (the EP&A Act 1997); in particular
- Resilience and Hazards State Environmental Planning Policy, 2022;
- State Environmental Planning Policy (Precincts Regional) 2021 Pt 5.8 Gosford City Centre;
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999;
- Water Management Act 2000;
- NSW Aquifer Interference Policy, 2012; and
- NSW DPIE (2021) Minimum requirements for building site groundwater investigations and reporting, Information for developers and consultants.

2 SITE CHARCTERISATION

2.1 SITE LOCATION

The Site is located at 305 Mann Street, Gosford 2308, approximately 90 km southwest of Newcastle. A summary of the Site details is outlined in **Table 2-1**.

Site Name	Former Mitre 10 Warehouse
Site Address	305 Mann Street, Gosford, NSW 2308
Current Title Identification	 Lots 1, 2, 4, 29, 30, 31 & 32. Section 1 – DP 1591 Lot 1 – DP 911163, DP 911164
Local Council	Central Coast Council
Site Zoning	B4 – Mixed Use
Site Owner	University of Newcastle
Current Site Use	Vacant commercial premises (most recent past operation as a Mitre 10 hardware store).
Proposed Site Use	UoN campus, consistent with current zoning (B4 Mixed Use).

Table 2-1: Site Details

2.2 SITE FEATURES

The Site covers an area of approximately 4675 m². Structures and features at the Site include a large warehouse (which housed the former Mitre 10 store) occupying the western portion, a central vegetated garden area and a concreted open car park that occupies the remainder of the Site.

The concreted open car park and central garden area slope toward the northwest and are in poor condition with several cracks and vegetation growing throughout.

2.3 SURROUNDING LAND USE

Adjacent, surrounding land use comprises:

- North Numerous commercial businesses are located northwards along Mann Street, zoned as Mixed Use (B4). Approximately 150 m north-east and 180 m north-west are residential properties, zoned as General Residential (R1). The Gosford Golf Club is located approximately 400 m north-west, within a Public Recreation (RE1) planning zone.
- **East** Variable zoning including Mixed Use (B4), General Residential (R1) and Public Recreation (RE1) is present directly east. Further east is the Rumbalara Reserve located approximately 170 m from Site.
- South Mixed Use (B4) zoning continues south of the Site for approximately 250 m, with Commercial Core (B3) zoning beyond. Hotel Gosford, Woolworths and Chemist Warehouse are all located along Mann Street within 500 m of the Site.
- West A rail infrastructure facility, within an Infrastructure (SP2) planning zone, runs north-south approximately 50m west of the Site, adjacent to Showground Road. Central Coast Local Health District and Gosford Hospital are located 100m west of the Site, zoned as Infrastructure (SP2). South of the hospital is residential housing zoned as General Residential (R1), with Gosford High Waterview Park located approximately 500 m south-west under Public Recreation (RE1) zoning.

2.4 CLIMATE, HYDROLOGY AND DRAINAGE

Typical landforms within the regional landscape are made up of undulating to rolling rises and low hills, with local relief of <60 m and slope gradients below 25%. The surface elevation on-site ranges from 15 m to 22 m Australian Height Datum (AHD).

It is considered that surface water from the site during periods of rainfall would run off the concrete surfaces (including roof drainage) and enter stormwater drains adjacent to Mann St. Where concrete is not present i.e., in the central vegetated garden, rainfall would infiltrate the soil profile.

The nearest surface water bodies to the site include:

- Brisbane Water estuary system located approximately 1.1 km to the south-west.
- Narara Creek located approximately 1 km north-west of the site, flows in a south-westerly direction into Brisbane Water.

Monthly climate statistics from the Gosford (Narara Research Station) automatic weather station (AWS 061087), located approximately 5 km northwest of the Site, indicate the site experiences warm summers to cold winters with an average maximum temperature of 23.0°C and an average minimum temperature of 11.1°C. The average annual rainfall is approximately 1,330 mm, with the highest rainfall period between January and March and the lowest rainfall period from July to October.

2.5 GEOLOGY

The Soil Landscape Map of Gosford – Lake Macquarie (Soil Landscape Series Sheet 9131-9231, Scale 1:100,000, 1993), indicates that the Site is located within the Erina Landscape, which comprises undulating to rolling rises and low hills on the Terrigal Formation. Soils within this landscape are generally moderately deep to deep, commonly prone to waterlogging, mass movement and high erosion. These soils are also commonly highly acidic.

Geological mapping from https://minview.geoscience.nsw.gov.au (See

Figure 2-1 below) indicates that the Site soils comprise the Burralow Formation of the Gosford Sub-group which form part of the Narrabeen Group of Triassic age.

Figure 2-1: Geological Map

The Burralow Formation comprises fine-grained, micaceous, quartz to quartz-lithic sandstone; interbedded with siltstone, grey shale and red-brown claystone. The upper layers of the Burralow Formation are likely to have weathered to a sandy Clay/clayey Sand.

Given that the Site has been previously developed it was considered likely that there would be some fill present.

2.6 ACID SULFATE SOILS

A review of the Acid Sulfate Soils (ASS) Map performed as part of the Enviro Screen report (LIR, 2022) obtained by Kleinfelder, identified the Site and land within its 500m buffer to be Class 5, meaning that "development consent is required for the carrying out of works within 500m of adjacent Class 1, 2, 3 or 4 land that is below 5m AHD and by which the water table is likely to be lowered below 1m AHD on adjacent Class 1, 2, 3 or 4 land".

Class 4 land is present within 500m of the site to the south-east; however, this land is at an elevation of above 16m AHD.

2.7 PREVIOUS INVESTIGATIONS

2.7.1 Geotechnique 2004 and SMEC 2016

Driller's logs from previous environmental investigations identified subsurface conditions at the Site to primarily consist of four lithological units:

- Surface Cover Concrete (underlain by gravel), pavers or imported gravel, ranging in thickness from near surface to approx. 0.35m below ground level (bgl).
- Fill Generally reworked silty clayey Sand, fine to medium grained with some gravels, ranging in depth from approx. 0.3m to 1.25m bgl.
- Topsoil (where fill is absent) –silty clayey Sand, fine to medium grained, dark brown, typically 0.2m to 0.4m thick below ground surface.
- Natural Soil Generally firm to stiff and stiff silty Clay, medium to high plasticity with occasional; layers of medium dense clayey Sand, fine to medium grained, or encountered beneath the fill and/or topsoil layers at depths ranging from approx. 0.4m and 1.25m bgl and extending to the maximum depth of investigation of 3.0m bgl.

Bedrock was not encountered in these investigations.

Groundwater was not encountered in these previous investigations.

2.7.2 Kleinfelder 2022

Kleinfelder undertook a contaminated land DSI and a Geotechnical Investigation in October and November 2022 respectively. The subsurface profile encountered was generally consistent across the investigation locations.

- Surface cover comprised a shallow layer of concrete/asphalt where present, underlain by sandy clay / gravelly sand Fill material.
- Very soft to soft and firm Silty / sandy Clay and bands of loose clayey Sand.
- Stiff and very stiff silty Clay / Clay with trace sand medium to high plasticity.
- Completely weathered clayey Sandstone / Siltstone (white to red, firm to stiff) with occasional small bands of ironstone bedrock
- Weathered very low or low strength Siltstone and Claystone with some bands of high strength sandstone.
- Medium to high strength Sandstone, reddish brown with grey and yellow mottling, with occasional thin (0.1-0.5m) bands of low medium and high strength Siltstone and Claystone.

Groundwater was recorded at between 2.2 and 4.4 m bgl in boreholes and monitoring wells during the period of investigation.

The DSI prepared by Kleinfelder detected minor recorded exceedances of the ANZG 2018 Freshwater 95% criteria for heavy metals (Copper, Nickel and Zinc), the PFAS NEMP 2020 Freshwater 99% criteria for PFOS and the NHMRC Managing Risks in Recreational Water criteria for Benzene in the groundwater.

SPOCAS and CRS testing for Acid Sulphate Soils indicated that samples of the natural soils, at depths of between 1m and 6m m bgl, exceeded the >1000 tonne soil threshold for provision of an ASS and Groundwater Management Plan; however, the site is at an elevation of around 18m AHD and is not mapped a being an Acid Sulphate Soil site. Although the laboratory results indicated some acidic soils with acid forming reactions on

oxidation, less saline conditions than normally expected for ASS/PASS were noted and some parameters were atypical of ASS/PASS soils. The origin of the acidity may therefore potentially not be as a result of typical ASS/PASS soils and could be associated with the local geological strata. This is supported by the soil landscape mapping in Section 2.5 which identifies the Terrigal Formation to be commonly highly acidic. Notwithstanding the above, management of acidic and potentially acid forming soils, in accordance with ASS/PASS guidance, is recommended to minimise the risk of environmental harm, even if the source of the acidity remains unconfirmed.

3 GROUNDWATER CONDITIONS

3.1 GROUNDWATER LEVELS

Groundwater was encountered in all boreholes during drilling, at the depths indicated in Table 3-1 below.

Borehole	Depth Encountered (m bgl)	Standing Level after 5mins	Stratum of Groundwater Strike
BH1	4.0	No Rise	Silty Clay
BH2	3.9	2.9	Clay
BH3	2.3	No Rise	Clay
BH4	3.5	No Rise	Clay
BH5	3.5	No Rise	Clay
BH6	Not Encountered	-	-
BH7	5.9	No Rise	Weathered Siltstone
BH8	3.2	No Rise	Clay
BH9	Not Encountered		-
BH10	Not Encountered	-	-
BH11	1.5	No Rise	Clayey Sand

Table 3-1: Groundwater Strikes During Drilling

A total of three additional groundwater monitoring wells were installed in BH1, BH7 and BH8 during the DSI and three additional wells, BH9, BH10 and BH11 were installed in April 2023, to provide additional information on groundwater levels within the soft to firm and stiff to very stiff clay layers. A borehole location plan is Included as **Figure 1** in **Appendix A** and borehole logs are included as **Appendix B**. At-rest groundwater levels were monitored on 23 November 2022 and 4 May 2023 and maximum recorded levels are shown in **Table 3-2** below:

Borehole	Depth of Well	Depth to Water
	(m bgl)	(m bgl)
BH1	6.55	4.44
BH7	6.81	3.23
BH8	6.98	2.24
BH9	6.00	2.45
BH10	3.00	2.50
BH11	3.00	2.61

Table 3-2: Groundwater Level Monitoring

Groundwater is known to fluctuate due to local and regional factors including, but not limited to, irrigation, precipitation events, site topography, seasonal changes, well pumping, and periods of wet or dry weather. Therefore, subsurface water conditions at other times may be different from those described in this report.

3.2 GROUNDWATER ASSESSMENT

Field parameters were measured and recorded for groundwater during the first two Kleinfelder GMEs on-site in November 2022 and April 2023, **Table 3-3** summarises these results with detailed results provided in Appendix C.

Table 3-3: Groundwater field parameters

Location	Date	TEMP	DO	SC	TDS	PH	ORP	TURB
		deg C	ppm	uS/cm	mg/L	pH units	mV	NTU
BH1	23- Nov-22	21.1	1.65	420	273	5.71	118	
	27-Apr- 23	26.3	4.33	224.2	142	5.47	194	943.22
BH7	23- Nov-22	18	4.93	304	197	7.34	49	
	27-Apr- 23	19.0	3.00	244.7	179	4.87	158.6	220.12
BH8	23- Nov-22	18.6	2.71	300	195	5.82	112	
	27-Apr- 23	19.5	3.20	245.3	178	5.08	241.9	573.34

3.3 ADOPTED GUIDELINES

3.3.1 Human Health

3.3.1.1 NHMRC (2021) and NEMP (2020) – Australian Drinking Water Guidelines (recreational) and Human Health Guideline values (Recreational Water Quality)

The Australian Drinking Water Guidelines (ADWG) are intended to provide a framework for good management of drinking water supplies that assure safety at point of use. The provided guidance values are based on healthbased and aesthetic quality of water. Groundwater at the site will not be extracted for drinking purposes during siteworks or in future site operation. In accordance with the approach recommended by NHMRC (2008) *Guidelines for Managing Risks in Recreational Water,* the ADWG criteria will be adopted for volatile compounds, to assess the risk of incidental ingestion for intrusive maintenance workers. For non-volatile compounds, the ADWG criteria will be adopted and adjusted by a factor of 10 to be applicable for incidental ingestion, as outlined in NHMRC 2008. For PFAS, the NHMRC Guidance on Per and Polyflouroalkyl substances in Recreational Water will be referred to.

The National Environment Protection Measures (NEMP) 2020 Per and Poly-Fluoroalkyl Substances are intended to provide a framework in relation to recreational use of waters as recommended by NHRMC 2019. The NEMP 2020 guidelines will be adopted as criteria for PFAS compounds relating to recreational use of waters when they are potentially used off-site.

3.3.2 Ecological

To assess the potential risk to ecological receptors at the point of groundwater discharge, laboratory results from this assessment will be compared to the *Australian and New Zealand and Australian States and Territories* (*ANZAST*) 2018, *Australian and New Zealand Guidelines for Fresh and Marine Water Quality Guidelines* (ANZG). The ANZG refers to the *Australian and New Zealand Environment and Conservation Council (ANZECC) 2000* guidelines and presents default guideline values (DGV's) for assessing water quality to ecological receptors. Different levels of species protection are applied according to the current or desired ecosystem condition and associated level of protection.

Based on the environmental setting of the Site, determined in **Section 2** of the Kleinfelder DSI SAQP, the ANZG DGVs for slight to moderately disturbed ecosystems have been adopted, considered to be protective of Brisbane Water (*ANZECC 2000*).

A summary of the adopted soil and groundwater guideline values is presented in Tables T3-T10 in Appendix C.

3.4 GROUNDWATER GAUGING AND HYDROCARBON OBSERVATIONS

Three groundwater monitoring wells were installed during the time of the soil investigation. Stabilised groundwater levels were measured for wells BH1, BH7 and BH8 (4.4, 3.2 & 2.4mbTOC respectively). PID headspace readings did not identify any volatiles within the groundwater wells.

3.5 GEOCHEMICAL PARAMETERS

Geochemical parameters recorded during the investigation are presented in **Tables T3-T10**, **Appendix C**. The geochemical parameters indicate the following:

- Groundwater ranges presented in **Table 3-3** above from pH 7.34 (BH7) to 4.81 (BH7) with an average pH of 5.08 indicating slightly acidic groundwater conditions.
- Electrical conductivity ranged from 224.2 µs/cm (BH1) to 420 µs/cm (BH1), indicating groundwater is fresh.

3.6 ANALYTICAL RESULTS

Six groundwater samples have been submitted for analysis as part of two GMEs. Analytical results obtained during the investigations are presented in **Tables T3-T10**, **Appendix C** compared to the adopted assessment criteria presented in **Section 3.3** Analytical results identified that BTEXN, TRH, PAH, Heavy Metals (Copper, Nickel and Zinc), and PFAS analytes were detected above the LOR. A total of 6 heavy metal results exceeded the ANZG 95% Freshwater criteria. One sample exceeded the PFAS NEMP 2020 Freshwater 99% limit for PFOS in groundwater from BH8.

3.7 GROUNDWATER

Phase Separated Hydrocarbons & Sensory Observations

Phase Separated Hydrocarbons (PSH) are hydrocarbon contamination present on the surface (light aqueous phase) or beneath the base (dense aqueous phase) of the water column. No measurable PSH were detected during Kleinfelder GMEs on-site. However, a moderate hydrocarbon odour was noted in BH7 during field works during two consecutive GMEs.

Human Health and Environmental Criteria

Aromatic hydrocarbons and heavy metals were detected in groundwater samples analysed. Groundwater analytical results with concentrations above the LOR are summarised below:

- BTEX were detected in BH7 groundwater well samples during the past two GMEs. Concentrations of Benzene exceed the NHMRC Recreational Water criteria of 10µg/L during the April GME, whilst Naphthalene concentrations exceeded the ANZG 2018 Freshwater 95% Level Of Species Protection (LOSP). Remaining BTEX concentrations were below the ANZG 2018 Freshwater 95% criteria which have been selected as the most appropriate criteria.
- Concentrations of Copper exceed the ANZG 2018 Freshwater 95% criteria in one sample.
- Concentrations of Nickel exceed the ANZG 2018 Freshwater 95% criteria in one sample.
- Concentrations of Zinc exceed the ANZG 2018 Freshwater 95% criteria in all three samples.
- PFAS concentrations of PFOS and PFOA were detected in two samples at BH8. The concentrations of PFOS
 exceeded the PFAS NEMP 2020 Freshwater 99% limit during both GMEs. PFAS concentrations did not
 exceed the NHRMC criteria for recreational waters.
- PAH concentrations of Naphthalene and Acenaphthene were detected above LOR at BH7, with the April GME results exceeding the ANZG 2018 Freshwater 95% LOSP criteria for Naphthalene.
- TRH and TPH concentrations were detected above LOR in groundwater samples from BH7 during both GMEs. These results do not exceed adopted criteria on-site.
- The pH value of the groundwater from all wells was below the range considered appropriate (6.5-8.5) for recreational waters by NHMRC.

Concentrations Organophosphorus & Organochlorine pesticides & Polychlorinated Biphenyls were not reported above the LOR.

3.8 **GROUNDWATER ABSTRACTION BORES**

A registered groundwater bore search was performed by Land Insight. The search identified 48 licensed groundwater bores within a 2 km radius of the Site, with the majority greater than 1 km distance. Most of the bores are located in two main clusters, the largest cluster of 16 bores being approximately 1.1 km north of the Site, and the smaller cluster of six located approximately 1.4 km west (neither of which is down gradient of the Site with respect to groundwater). Most bores were licensed for monitoring purposes (30) or town water supply (4) and installed at depths ranging from approximately 40 to 200 mbgl and are therefore unlikely to extract groundwater from the shallow aquifer that may be impacted by dewatering at the Site. Further details are included in the Central Coast Campus, DSI (KLF, 2022)

3.9 DEWATERING DURING CONSTRUCTION ACTIVITIES

Based on the minor recorded exceedances of ANZG Freshwater criteria for three heavy metals, PFOS, PAH and BTEXN concentrations, which exceed the adopted criteria presented in **Section 3.3**, and the presence of acidic soils on site, groundwater extracted during any dewatering activities conducted during construction is not considered suitable for discharge to the stormwater network without pre-treatment. Prior approval will need to be sought from the local water authority to discharge to the sewer network, or potentially, water may need to be pumped, possibly stored and treated on-site prior to discharge. Given the prevailing water quality, contaminant concentrations may pose an issue with respect to gaining approval to discharge to the sewer network without treatment, if that is determined to be the most appropriate method of water discharge during construction. Alternatively, discharge water could be stored locally and removed from site by tanker to an appropriately licensed waste disposal facility.

4 DISCHARGE WATER QUALITY GUIDELINES

The current Central Coast Councils Liquid Trade Wastes Acceptance Limits (LTWALs), are provided in Appendix D and are summarised in **Table 4-1**, **Table 4-2 & Table 4-3** below. On review of the LTWALs it is apparent that the groundwater will potentially not be suitable for discharge to sewer systems without pre-treatment, as pH is generally found to be less than 7.0, Benzene at BH7 was reported greater than 0.001 and concentrations of PFAS, which are prohibited, were reported above LOR at BH1. It should be noted, however, that this assessment is based on well samples only, which are noted to be variable in quality. The chemistry of the dewatering returns is not currently known but would be influenced by seepage rates and locations within the excavation and the prevailing chemistry in those areas. Hence, the chemistry of extracted water would not be akin to that of any single borehole and would represent a mixture of observed chemistries in the wells, with the contribution from individual areas not yet known. Consequently, it would be premature to assume that all the contaminants exceeding LTWALs would be present at those concentrations in the extracted water. It is however, likely that the pH of extracted waters would require correction prior to sewer disposal if this was arranged.

4.1 ACCEPTANCE LIMITS

4.1.1 General Acceptance Limits

Parameter	Limits
Flow rate	The maximum daily and instantaneous rate of discharge (kL/h or L/s) is set on the available capacity of the sewer. Large dischargers are required to provide a balancing tank to even out the load on the sewerage works.
BOD₅ and suspended solids	Normally, approved at 300 mg/L for each of the parameters. Concentration up to 600 mg/L May be accepted
COD	Normally, not to exceed BOD5 by more than three times the concentration limit. This ratio is given as a guide only, to prevent the discharge of non-biodegradable waste.
Total dissolved solids	Up to 4000 mg/L may be accepted. Acceptance limits may be reduced depending on available effluent disposal options and will be subject to a mass load limit.
Temperature	Less than 38°C
рН	Within the range of 7.0 to 9.0
Oil and Grease	100 mg/L if the volume of the discharge does not exceed 10% of the design capacity of the treatment works, and 50 mg/L if the volume is greater than 10%.
Detergents	All industrial detergents are to be biodegradable. A limit on the concentration of 50 mg/L (as MBAS) may be imposed on large liquid trade wastes.
Colour	Colour must be biodegradable. No visible colour when diluted to the equivalent dilution afforded by domestic sewage flow. Specific limits may be imposed on industrial discharges where colour has a potential to interfere with sewerage treatment processes and the effluent management.
Radioactive substances	If expected to be present (e.g lodine 131 from ablation), acceptance requirements will be set on a case-by-case assessment.
PFOS and PFOA	Prohibited

Table 4-1: General Acceptance Limits

4.1.2 Inorganic and Organic Contaminants

Table 4-2: Inorganic and Organic Contaminants Acceptance Limits

Inorganic compounds		Organic compounds		
Parameter	Maximum concentration (mg/L)	Parameter	Maximum concentration (mg/L)	
Ammonia (as N)	50	Benzene	<0.001	
Boron	5	Toluene	0.5	
Bromine	5	Ethylbenzene	1	
Chlorine	10	Xylene	1	
Cyanide	1	Formaldehyde	30	
Fluoride	30	Phenolic compounds (except pentachlorophenol)		
Nitrogen (total Kjeldahl)	100	Petroleum hydrocarbons 1. C6-C9 (flammable) 2. Total Recoverable Hydrocarbons (TRH)	5 30	
Phosphorus (total)	20	Pesticides general (except organochlorine and organophosphorus)	0.1	
Sulphate (as SO ₄)	500	Polynuclear aromatic hydrocarbons (PAHs)	5	
Sulphide (as S)	1			

4.1.3 Metals

Table 4-3: Metals Acceptance Limits

Parameter	Maximum Concentration (mg/L)	Allowed daily mass limits (g/d)
Aluminium	100	-
Arsenic	0.5	2
Cadmium	1	5
Chromium*	3	10
Cobalt	5	15
Copper	5	15
Iron	100	-
Lead	1	5
Manganese	10	30
Mercury	0.01	0.05
Molybdenum	5	15
Nickel	1	5

Parameter	Maximum Concentration (mg/L)	Allowed daily mass limits (g/d)		
Selenium	1	5		
Silver [#]	2	5		
Tin	5	15		
Zinc	1	5		
Total metals excluding aluminium, iron molybdenum	n, manganese and Less than 30m	Less than 30mg/L and subject to total mass loading requirements		

5 DEWATERING CONDITIONS AND CONTROLS

5.1 ESTIMATED GROUNDWATER VOLUMES

Falling head permeability testing has been undertaken in monitoring wells installed in four boreholes, BH1, BH9, BH10 and BH11. The maximum recorded permeability values for each well are shown in **Table 5-1** below.

Monitoring Well	Maximum Recorded Permeability k (m/s)
BH1	1.4 x 10 ⁻⁸
BH9	5.7 x 10 ⁻⁹
BH10	1.2 x 10 ⁻⁸
BH11	2.5 x 10 ⁻⁸

Table 5-1: Groundwater Level Monitoring

A value of 2.5×10^{-8} has been adopted to calculate the estimated groundwater volume.

The cut for the retaining wall will be along the eastern and southern boundaries (See **Figure 1-1**) and the depth of cut is approximately 5m at the south-east corner of the building decreasing to 0m after 50m along both the boundaries. To allow for seasonal variation we have allowed for a maximum groundwater level of 2m bgl in the area of the wall. Therefore, the seepage area will be $45m^2$ of walls along both boundaries and potentially $450m^2$ of floor, a total of $540m^2$ this will result in a maximum inflow of $1.35x10^{-5}m^3$ /s or 1166L/day.

It is anticipated that the cut will be open for no longer than 3 months, so the maximum volume of groundwaterderived water to be disposed of during construction is likely to be approximately 104,976L or 0.105ML. It is noted that rainwater accumulation during this period will contribute additional volumes.

A Water Access Licence (WAL) is required for groundwater take above 3ML/year. If the take is less than or equal to 3ML of water per year for any aquifer interference activities listed in Clause 7 of Schedule 4 of the Water Management (General) Regulation 2018, an exemption may apply.

Under the exemption, a person can take up to 3 megalitres of groundwater through an aquifer interference activity per authorised project per water year without needing to obtain a WAL. DPE Water notes that there are requirements for an exemption, including:

- The water is not taken primarily for consumption or supply.
- The person claiming the exemption keeps a record of the water taken under the exemption and provides this to the Minister within 28 days of the end of the water year.
- The records are kept for 5 years.

As the expected take is less than 3ML/year, the project team should apply for a WAL exemption. Further information and an application for a WAL exemption is located at <u>https://water.dpie.nsw.gov.au/licensing-and-trade/licensing/groundwater-wal-exemptions</u>.

5.2 DEWATERING METHOD

Due to the geology of the site (clays) and the low seepage volumes it is anticipated that the dewatering will be undertaken by the sump and pump method, where water is collected in an excavated sump and/or tank and treated for contamination before being periodically pumped to sewer or tankered off site for disposal as appropriate.

Based on the current design, the assumed shoring approach for the excavation is contiguous bored pile walls with shotcrete facing, which should stabilise the exposed surfaces of the bulk excavation. It is expected, therefore, that the dewatering system will operate until the shored area is effectively drained. All contaminated extracted water resulting from the dewatering process will require treatment before discharging into a Council sewer pit and only following approval for discharge by Council is obtained. If this is not possible, impacted water should be tankered off-site to an appropriately licensed disposal facility.

With proper design and construction, the chosen shoring method is capable of retaining water in deep excavations. It should provide a relatively impermeable barrier, significantly reducing the rate of groundwater seepage into the excavation.

A fully tanked basement is to be adopted for the development. As such, permanent dewatering should not be required from within the completed basement.

5.3 GROUNDWATER DRAWDOWN IMPACTS

Most bores within 2km of the site were licenced for monitoring purposes (30) or town water supply (4) and installed at depths ranging from approximately 40 to 200 mbgl and are therefore unlikely to extract groundwater from the shallow aquifer that may be impacted by any drawdown of water due to dewatering at the site.

In specific cases, dewatering may induce ground subsidence on neighbouring properties due to the associated increase in vertical effective stress in the ground. It is beyond the scope of this DMP to assess the risk on neighbouring properties associated with ground settlement. It is recommended that a dilapidation report is completed by a suitably qualified engineer before the start of the construction works and following the completion of construction and the restoration of groundwater levels.

5.4 WATER QUALITY TREATMENT

Although likely (as a consequence of pH levels), the need for treatment has not yet been confirmed, as the Central Coast Council has not yet been consulted on the matter; however, based on the preliminary data collected to date it is anticipated that during dewatering activities the extracted water will require regular monitoring for pH, metals, PFAS, PAH and BTEXN. The need for treatment will be determined by the Contractor after the initial sampling assessment, which is to be conducted prior to the start of dewatering. Should treatment be required, Kleinfelder suggests that the selection and design of the preferred treatment system would benefit from a bench trial by a specialist treatment contractor appointed by the project team and implemented by the Contractor. Alternative and/or additional treatment options will be implemented, if necessary, depending on which parameters are found to exceed the discharge criteria outlined in **Section 4**.

The Central Coast Council Liquid Trade Waste, acceptance limits and prohibited substances, provided in Appendix D, states:

"Where an existing liquid trade waste discharge and the quality or volume does not meet Council's acceptance limits, the applicant is required to submit an 'Effluent Improvement Program' setting out how Council's requirements will be met. The Effluent Improvement Program must detail the methods and actions proposed to achieve the acceptance limits, and a timetable for implementation of the proposed actions."

It is anticipated that temporary storage of extracted waters would be required on site prior to disposal, to accommodate dewatering continuation whilst analysis was undertaken. Any treatment methodology selected will need to contemplate if there is sufficient room on site for temporary storage to allow treatment or if in-line treatment will be required. In-line treatment would avoid this but would require reasonable consistency in flow and water quality, which may not be achievable. At this juncture, it is envisaged that some form of treatment would be required for sewer discharge, and methodology would be dependent on agreement of acceptance limits with Council. Temporary storage and analysis may facilitate a range of disposal options to be considered depending upon water quality, providing appropriate licensing/agreements are in place and treatment equipment available.

5.5 GROUNDWATER QUALITY MONITORING REQUIREMENTS

To assess the ongoing suitability of extracted water for discharging to the municipal sewer system, water quality monitoring will be undertaken prior to commencement and for the duration of dewatering activities at the site. Ongoing monitoring is also required to ensure the treatment system (if any) is functioning as intended and confirm the quality of discharged water is within acceptable ranges.

The following frequency and methodology of sampling is proposed for the groundwater monitoring to be conducted at this site:

- Initial Assessment: An initial round of sampling must be conducted before the beginning of excavation. The collected groundwater sample should be a composite of all the boreholes in the excavation area and shall be tested for the target quality parameters listed in **Section 4** (as a minimum), to establish baseline (initial) conditions. An assessment against the proposed discharge water quality requirements will then be conducted. Should deviations from the adopted discharge criteria be technically justifiable, approval from Council must be sought to allow any adoption of alternative discharge criteria.
- With a regular monitoring regime, subject to statutory authority approval, treated water may be discharged directly to the sewer system or removed from site. The monitoring period should be reflective of the variability of the extracted water quality. Following confirmatory analysis to prove the effectiveness of any treatment methodology in producing a consistent water quality, a weekly sampling frequency should be adopted. It may be necessary to adjust sampling frequency depending upon the volume of temporary storage available (if used), fill rate and disposal frequency i.e., sample from tanks when filled and ready for disposal. The sampling program will comprise a minimum of three effluent (i.e., treated) samples, tested for the target parameters to confirm the system is functioning as intended. The weekly sampling frequency should be maintained for the duration of the discharge period, provided the analytical results indicate the treated water quality meets the adopted discharge criteria or risks are considered to be significantly low. Depending on the discharge water quality and the selected treatment method it may be possible to treat water in-line, without large temporary storage, e.g., pH dosing. In such an instance in-line monitoring would be prudent, with automated discharge controls linked to contaminant levels. The dewatering contingency measures described in Section 5.7 should be adopted if exceedances to the adopted criteria are reported.

If the analytical results from the Initial Assessment indicate that groundwater treatment is not required, then monitoring of discharge should continue on a weekly basis as described above to ensure chemical concentrations remain within discharge parameters.

All laboratory analytical results for the groundwater samples must be documented and maintained by the appointed Contractor, for inspection upon request by Council. The contractor should seek advice from an appropriately qualified environmental consultant prior to deviating from any of the above monitoring requirements.

The water quality monitoring must be certified by an experienced and qualified consultant. The consultant is to review all testing samples and confirm (in writing) that the water quality meets the required standards. If testing establishes that the discharge standards are not met, release to the sewer system is to stop immediately and the procedures described in **Section 5.7** implemented.

The Site Manager should seek advice from the water quality consultant prior to deviating from the agreed monitoring program, to ensure the quality of discharged groundwater is not compromised. Once the Site Manager and Consultant have been appointed, their names and contact information are to be clearly displayed in the site office.

Summary of Specific Activities

The appointed contractor and/or Site Manager will be responsible for ensuring that the following activities (requirements) are undertaken during the dewatering program:

- Maintain erosion and sediment control measures in a functioning condition, until all earthwork activities are completed.
- Perform daily visual inspection of stormwater diversions and sediment / erosion control devices, ensuring they are operating effectively and at full capacity.
- Implement appropriate remedial measures where any controls or devices are not functioning effectively or are inappropriate.
- Collate records and comments on the condition of existing erosion and run-off controls (drains, silt fences, catch drains etc.), dewatering procedures and test results, and any site instructions issued to sub-contractors to undertake remedial works.
- Maintain rainfall data (to be filed on site).
- Confirm water quality parameters meet the relevant discharge limits, by disclosing supporting documentation upon request.
- Maintain a record of the amount of water taken and provide these records to the Department of Planning and Environment within 28 days of the end of the water year.

- Keep the records for 5 years.
- Reporting any incidents of poor drainage or uncontrolled discharge.
- Recording all daily inspection reports, environmental incidents and controlled discharge volumes, which may be reviewed during any environmental audit performed on the site.

5.6 VIBRATION, NOISE AND ODOUR MANAGEMENT

The following vibration, noise and odour risks must not occur during dewatering:

- Excessive vibration and noise levels associated with site plant / dewatering equipment; and
- Odours released from collected groundwater, which may pose a risk to human health and/or the aesthetic condition of the environment.

It is the responsibility of the Site Manager to ensure appropriate management of vibration, noise and odour during dewatering operations. Appropriate management methodologies include:

- Undertaking dilapidation surveys of neighbouring buildings.
- All sub-contractors to work only within defined hours set by the DA conditions.
- All reasonable steps shall be taken to muffle and acoustically baffle plant and equipment exceeding applicable
 noise limits. Noise and vibration levels generated by site works must be within the limits set by the DA
 conditions, the site-specific environmental management plan and the Protection of Environmental Operation
 Act 1997.
- Give consideration to the noise emission from plant/equipment prior to its selection/mobilisation to site.
- Schedule the use of noisy equipment at the least-sensitive time of day.
- Situate noisy equipment at the greatest distance from the noise-sensitive area or orient the equipment so that noise emissions are directed away from sensitive areas, to achieve the maximum attenuation of noise.
- Where there are several noisy pieces of equipment, schedule operations to minimise cumulative impacts.
- Keep equipment well maintained.
- Ensure engine shrouds (acoustic linings) are installed (where feasible).

5.7 DEWATERING CONTINGENCIES

It is anticipated that the proposed dewatering strategy will be effective; however, contingent actions are required should the scenarios detailed in **Table 5-1** arise.

Anticipated Problems	Corrective/Preventive Actions
During the Monitoring Period (weekly), quality of treated water does not satisfy the adopted discharge criteria outlined in Section Due to water deterioration or insufficient treatment.	Discharge to the sewer system must be suspended. Extracted water should be retained onsite and stored in appropriate tanks for further on-site treatment and sampling by an environmental consultant until it is proven to meet the adopted discharge criteria. The water treatment design must include suitable storage, with sufficient capacity, to be used if such conditions arise. Capacity should be sufficient to receive dewatering inputs during the period of additional analysis and treatment adjustment.
	Alternatively, should a trade waste application be in place, groundwater will be discharged under the license agreement.
	Additionally, the onsite treatment system issues should be diagnosed and adjusted. A higher frequency of treated, exit water sampling will be necessary initially, to achieve the designed treatment goals.

Table 5-1: Mitigation Measures for Potential Dewatering Issues

Anticipated Problems	Corrective/Preventive Actions
Failure of treatment system or storage tanks/bunding, causing release of untreated water.	Immediate suspension of treatment plant and discharge. Temporary storage tank capacity should be available to receive ongoing discharge, assuming the dewatering system cannot be shut off. Leaking tank contents should be decanted to additional storage or tinkered from site to an appropriately licensed discharge facility. Similarly, tinkering off site should be arranged if the treatment system fails with limited storage available. Bunding should be in place around storage areas to contain potential spills or leaks to ensure contaminated water is not released off-site. Regular, documented tank and bund inspections should take place.
	contained collected and returned to the treatment.system once repaired.
Visual and / or olfactory anomalies (e.g., change in water colour, turbidity, odour, presence of oil / grease) are observed in extracted groundwater.	The onsite treatment system should be diagnosed and adjusted. The contractor is to seek advice from environmental consultant in regard to any additional assessment and treatment that may be required. Additionally, should trade waste application be in place, groundwater will be discharged under the license agreement, subject to discharge criteria being met.
Chemical/ fuel spill and leaks from machinery	 Stop earthworks, notify site project manager. Use accessible soil or appropriate absorbent material to absorb the spill (if practicable). Stockpile the impacted material in a secure location, on builder's plastic to avoid cross contamination. Inspect groundwater and note any visual and/or changes. The contractor should also seek advice from the environmental consultant regarding the additional assessment and treatment that may be required.
Excessive rainfall	Ensure sediment and surface water controls are in place and functioning as intended, as per the designs provided in the site-specific Soil and Water Management Plan. Any non-conformance is to be documented and rectified. The capacity of the dewatering system to dispose of larger volumes of water should be evaluated and if required, a temporary system or increased storage should be utilised following correspondence with Council/ Water NSW and the environmental consultant.
Excessive noise	Identify the source and isolate if possible. Modify the actions of the source or erect temporary noise barriers if required.
Excessive organic odours / vapours	In accordance with Council's Contaminated Land Policy, no nuisance odours are to be detected at any site boundary during the dewatering stage.
	be conducted to reduce risk of site boundary odour emissions breaches. Should odour emissions be detected at a site boundary, the following measures will be implemented:
	 Monitor ambient air across the site and boundaries with a portable photo- ionisation detector (PID), a LEL meter (LEL) and a landfill gas analyser (LGA). Implement control measures, including respirators for on-site workers, use of odour suppressants and wetting down of excavated material.
	4. If any occupants of adjoining premises raise issues regarding odour, these should be investigated. Notification should be in writing, providing the contact details of the responsible site personnel.5. Record logs for volatile emissions and odours.
Perceived impacts on the stability of adjacent structures	Contractor to seek advice from qualified professional (such as a geotechnical and/or structural consultant) in regard to the additional assessment and monitoring that may be required.

Anticipated Problems	Corrective/Preventive Actions
Complaint management	Notify Client, Project Managers and Environmental Consultant (if required) following complaint. Report and log complaint as per management procedures. Implement control measures to address reason of complaint (if possible).
	Notify complainant of results of remedial actions.

6 CONCLUSIONS

Due to the geology of the site (clays) and the low seepage volumes expected, it is anticipated that the dewatering will be undertaken by the sump and pump method, where water is collected in an excavated sump and/or tank for contamination treatment within an on-site treatment plant and periodically pumped to sewer or tankered off site for disposal as deemed appropriate after consultation with Central Coast Council Liquid regarding Trade waste Acceptance Limits and other appropriate guidelines.

Dewatering at the site can expect a maximum inflow of up to 1.35x10⁻⁵m³/s or 1166L/day, it is anticipated that the cut will be open for no longer than 3 months, so the maximum volume of water to be disposed of during construction is likely to be approximately 104,976L or 0.105ML. As the expected take is less than 3ML/year, the project team should apply for a WAL exemption.

Most bores within 2km of the site were licensed for monitoring purposes (30) or town water supply (4) and installed at depths ranging from approximately 40 to 200 mbgl and are therefore unlikely to extract groundwater from the shallow aquifer that may be impacted by any drawdown of water due to dewatering at the site.

Groundwater is likely to require treatment on-site to adjust pH and potentially reduce concentrations of contaminates of PAHs, metals, BETXN and PFAS to allow disposal to sewer, subject to a trade waste agreement being in place with Council. Alternatively, impacted discharged water would need to be tankered off site for disposal at a suitably licensed facility. The need for treatment cannot yet be confirmed, as the Central Coast Council has not yet been consulted on the matter; however, based on the preliminary data collected to date it is anticipated that during dewatering activities the extracted water will require close monitoring for pH, metals, PFAS and BTEX. The need for treatment and anticipated methodology, along with storage and disposal arrangements will be determined by the Contractor after the initial sampling assessment, which is to be conducted prior to the start of dewatering proper.

Section 5 Details dewatering considerations and controls that must be adhered to in order to adequately control the risks to the Site and surrounding areas.

It is considered that the dewatering during construction at the Site should have minimal impact on the shallow aquifer from which water is to be abstracted.

7 REFERENCES

- Kleinfelder, Central Coast Campus Geotechnical Investigation Report, 305 Mann Street Gosford, NCA22R147463, December 2022
- Kleinfelder, Central Coast Campus Detailed Site Investigation, 305 Mann Street, Gosford NSW, NCA22R14011, December 2022
- Australian Standard AS 1726-2017 Geotechnical Site Investigation.
- State Significant Development Application (SSD-47749715) 305 Mann Street Gosford
- NSW Acid Sulfate Soil Assessment Guidelines 1998
- Contaminated Land Management Act 1997 (the CLM Act 1997)
- Protection of the Environment Operations Act 1997
- Environmental Planning and Assessment Act 1979 in particular
- State Environmental Planning Policy 55 Remediation of Land
- State Environmental Planning Policy (Precincts Regional) 2021 Pt 5.8 Gosford City Centre
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999
- Water Management Act 2000, NSW Government
- Water Management (General) Regulation 2018, NSW Government
- NSW Aquifer Interference Policy, NSW Government
- NSW DPIE (2021) Minimum requirements for building site groundwater investigations and reporting, Information for developers and consultants
- Proposed Residential & Commercial Redevelopment, Lots 1, 2, 4, 29-32 Section 1 In Dp1591, Lot 1 In Dp911163 & Lot 1 In Dp911164, Corner Of Mann & Beane Streets, Gosford, Stage 2 Contamination Assessment, Report No 10060/1-Ac, 6 February 2004, Geotechnique.
- Preliminary, Site Investigation Report, 305 Mann Street, Gosford, SMEC 2016
- NHMRC (2021) Australian Drinking Water Guidelines (recreational)
- ASC NEPM (2013) and CRC Care (2011) Health Screening Levels (HSLs) for Petroleum Hydrocarbons
- Australian and New Zealand and Australian States and Territories (ANZAST) 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality Guidelines (ANZG).
- Central Coast Councils Liquid Trade Waste Acceptance Limits

APPENDIX A – FIGURES

The information included on tihs graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timelines or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

Legend

- Site boundary
- New Bore Hole Locations
- Bore Hole Locations

APPENDIX B – BOREHOLE LOGS

Date Begin - End: 19/10/22 D		Dri	Iling Company:	Tuck	er Environmental		ROCK CORING LOG BH1						
Logg	jed E	By:		J.Roby			Dri	II Crew:	J. Tu	cker	l		
Hor	Vert	. Da	tum	Not Available			Dri	lling Equipment:	Geop	robe			
Plun	ge:			-90 degrees			Dri	lling Method:	See Drilling Method Column				
Weat	ther			Overcast			Bo	re Diameter:	<u>100 ı</u>	nm. O.D.			
							FIEL	D EXPLORATION				MONITORING WELL CONST	RUCTION
	pth (metres)	illing Method	mple Type	mple Number	covery R=No Recovery)	(vmqq) (FID (ppmv)	aphical Log	S	urface Co	ndition: Asphalt		Completion Method: Flush mount cap in concrete	
	De	Dri	Sa	Sa	Re NI	∎	ΰ	L	Lithologi	c Description			
Ÿ		Continuous Flight Auger		о́ BH2_0.5 BH2_1.0 BH2_2.0		0	××××××××××××××××××××××××××××××××××××××	FILL: CONCRETE: FILL: Sandy CLAY subrounded gravel plasticity, dark gray CLAY with Silt: hig moist to wet, stiff to Sandy CLAY: coar medium plasticity, medium to stiff, no Silty CLAY: low pla very stiff, no stainin Completely Weath white, no odour, ve Completely Weath white, no odour, ve	Lithologi grey, nc ' with Gr , subrou y, no odd gh plastid o very st se sand yellow to staining asticity, n ng nered SI ery stiff, r	c Description odour, no staining avel: coarse sand, nded sand, low to mediu ur, moist, soft, no staini ity, orangish red, no odd ff, no staining subrounded sand, low i o white, no odour, dry to ed to white, no odour, dry to ed to white, no odour, dry to constaining	um ng our, to moist, ry, dish ish	Bentonite / Neat Cement Grout 2" SCH 40 Solid PVC Riser Bentonite Chips 20/40 Sand Pack 2" SCH 40 Slotted 0.010 PVC Pipe Bentonite Chips	
	- 7 - -	Coring											
						1	1	PROJECT NO.: 20232408.001A		R	ROCK	CORING LOG BH1	
KLEINFELDER Bright People. Right Solutions.								DRAWN BY: CHECKED BY: DATE: 15	AK DK 5/11/22		UON 30	Gosford Campus 05 Mann Street Gosford, NSW	Page: 1 of 3

PLOTTED: 16/11/2022 09:02 PM BY: JRoby

OFFICE FILTER: NEWCASTLE

gINT FILE: KIF_gint_master_2023 PROJECT NUMBER: 20232408.001A gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB [KLF_ENVIRONMENTAL LOG]

[~~~~~	Date Be	Date Begin - End:19/10/22 Dri		Dri	Drilling Company:				ROCK CORING LOG BH1				
1	Logged	By:		J.Roby			Dri	II Crew:	J. Tu	icker	l		
	HorVer	t. Da	atum	Not Available			Dri	lling Equipment:	Geo	probe			
	Plunge:			-90 degrees			Dri	lling Method:	See D				
	Weather	Weather: Overcast Bo					Bor	e Diameter:	100	mm. O.D.			
							FIELI	D EXPLORATION				MONITORING WELL CON	STRUCTION
	oth (metres)	ling Method	nple Type	nple Number	overy t=No Recovery)	/ FID (ppmv)	iphical Log	s	Surface Co	ondition: Asphalt		Completion Method: Flush mount cap in concrete	
	Dep	Drill	San	San	Rec (NR	DIG	Gra		Litholog	ic Description			
	9- 9- 10- 11- 12- 13- 13- 14-							PROJECT NO :					
	F	<1	E	SINFELI Bright People. Right	DE Soluti	R ons.		DRAWN BY: CHECKED BY:	AK DK			CORING LOG BH1 Gosford Campus 5 Mann Street	
								DATE: 15	5/11/22		(JUSTOTA, INSVV	Daras 2 of 2
ΒL													iaye.∠0i3

PLOTTED: 16/11/2022 09:02 PM BY: JRoby

OFFICE FILTER: NEWCASTLE

gINT FILE: KIF_gint_master_2023 PROJECT NUMBER: 20232408.001A gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB [KLF_ENVIRONMENTAL LOG]

· [Date Begin - End: 19/10/22 Dri		Dril	ling Company:	Tucker E	Environmental	ROCK CORING L	OG BH1				
	Logged I	By:		J.Roby			Dril	I Crew:	J. Tucke	r		
	HorVer	t. Da	atum	Not Available			Dril	ling Equipment:	Geoprob	e		
	Plunge:			-90 degrees			Dril	ling Method:	See Drillin	g Method Column		
	Weather	/eather: Overcast Bo					Bor	e Diameter:	100 mm	. O.D.		
ſ							FIEL	D EXPLORATION			MONITORING WELL CONSTRU	JCTION
	th (metres)	ing Method	Iple Type	pple Number	overy =No Recovery)	/ FID (ppmv)	ohical Log	S	Surface Condition: Asphalt		Completion Method: Flush mount cap in concrete	
	Depi	Drilli	Sam	Sam	Recc (NR⁼	PID	Grap	L	_ithologic D	escription	-	
		Conting										
	22- Croundwater was terminated at approximately 21.3 m. below ground level. 22- Rock was encountered at a depth of 5.7 m. during this borehole. Coring started at a depth of 5.7 m. Refer to attached corresponding detailed rock coring log for rock coring information. 22- Croundwater was observed at approximately 4 m. below ground surface during drilling. 23- GROUNDWATER LEVEL INFORMATION: 23- GROUNDWATER LEVEL INFORMATION: 23- Coring log for rock coring information. 23- Main the state of the s											
1	F	٢L	E	TINFELL Bright People. Right	DE Soluti	R ons.		20232408.001A DRAWN BY: CHECKED BY: DATE: 15	AK DK	UON 3i	I Gosford Campus 05 Mann Street Gosford, NSW	ane: 3 of 3
L											1	

PLOTTED: 16/11/2022 09:02 PM BY: JRoby

OFFICE FILTER: NEWCASTLE

gINT FILE: KIF gint master 2023 PROJECT NUMBER: 20232408.001A gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB [_KLF_ENVIRONMENTAL LOG]

JRoby	Date Begin - End: 18/10/22						Dril	ling Company:	Tucker Environmental	ROCK CORING LOG BH2
, 	Logged E	By:		J.Roby			Dril	I Crew:	J. Tucker	
PM	HorVert	. Da	tum:	Not Available			Dril	ling Equipment:	Geoprobe	
9:03	Plunge:			-90 degrees			Dril	ling Method:	See Drilling Method Column	
022 C	Weather:			Overcast			Bor	e Diameter:	100 mm. O.D.	
/11/20								FIEL	D EXPLORATION	
D: 16				L.	ery)	Ñ				
OTTEI	tres)	thod	be	pedmi	COVE	(ppm	g		Surface Condition	Asphalt
PLO	(me	g Me	e Ty	e Nr	ery lo Re	Ω	ical			
	epth	rilling	ampl	ampl	ecove IR=N	ID / I	raph			
	D	Δ	ű	Ő	₽.€ 	٩	G		Lithologic Des	ription
	-									
	-									
	-									
	-									
	9-									
	-									
	-									
	-									
	10—									
	-									
	-									
	-									
	11-									
	-									
STLE	-									
VCAS	-									
NEV	_	ğ								
TER:	12-	Corir								
	_									
0FFIC	_									
0	_									
5	13-									
L LOC	-									
A ENTA	-									
3.001. DNME	-									
32408 VVIRC	-									
202 F_EN	14									
IBER: LKL	-									
GLB	-									
JECT 2023.	-									
PRO.	15-									
-IBRA	-									
I_T_N	-									
SD_G	-									
123 NDAF							L,			
er_20 STAI								PROJECT NO .:	ROCI	CORING LOG BH2
mast :KLF			1	`				20232408.001A		
gint	(k	1	F	NFFI	DF	R		DRAWN BY:	АК	
PLAT			В	right People. Right	Soluti	ons.		CHECKED BY	U(DN Gosford Campus 305 Mann Street
LEM		-								Gosford, NSW
gINT gINT								DATE: 15/*	11/22	Page: 2 of 3

JRoby	Date Beg	in -	End:	18/10/22			Dril	ling Company:	Tucker Environmental		ROCK CORING LOG BH2					
BY: ,	Logged E	By:		J.Roby			Dril	I Crew:	J. Tucker							
M	HorVert	. Da	tum:	Not Available			Dril	ling Equipment:	Geoprobe							
09:03	Plunge:			-90 degrees			Dril	ling Method:	See Drilling Method Column							
2022	Weather:			Overcast			Bor	e Diameter:	100 mm. O.D.							
6/11/2								FIEL	DEXPLORATION							
PLOTTED: 1	th (metres)	ing Method	ıple Type	ple Number	overy =No Recovery)	/ FID (ppmv)	phical Log		Surface	Condition: As	phalt					
	Dep	Drill	San	Sam	Reco (NR:	PID	Gra		Lithologic Description							
_2023 PROJECT NUMBER: 20232408.001A OFFICE FILTER: NEWCASTLE TANDARD_GINT_LIBRARY_2023.GLB [_KLF_ENVIRONMENTAL LOG]	- - - - - - - - - - - - - - - - - - -	Coring	The bo Rock v started coring	rehole was terminated vas encountered at a de at a depth of 6.1 m. R log for rock coring int	at appro: pth of 6. efer to a formatio	kimately 1 m. du ttachec	/21.1 r rring th I corre	n. below ground level. is borehole. Coring sponding detailed rock	GROUNDM ⊈ Groundwate surface at th ≅ Groundwate surface duri <u>GENERAL 1</u> The rock co	/ATER LEV er was obsei he end of dri er was obsei ng drilling. <u>NOTES:</u> ring was ba	EL INFORMATION: ved at approximately 3 m. below ground ling. ved at approximately 4 m. below ground ckfilled with auger cuttings and bentonite.					
_gint_master_20 rE: E:KLF_STA.			F		٦F	P		PROJECT NO.: 20232408.001A DRAWN BY:	AK	ROCK	CORING LOG BH2					
INT FILE: KIf_ INT TEMPLAT			B	right People. Right	Soluti	ons.		CHECKED BY: DATE: 15/*	DK 1/22	UON 3((Gosford Campus 05 Mann Street Gosford, NSW Page: 3 of 3					
00											1 ago. 0 01 0					

.. Ч 09:03 PM 16/11/2022

OFFICE FILTER: NEWCASTLE

gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB_EKLF_ENVIRONMENTAL LOG] PROJECT NUMBER: 20232408.001A gINT FILE: KIf_gint_master_2023

IRoby	Date Beg	gin - End:		19/10/22	19/10/22 Di				Tucker Environmental	ROCK CORING LOG BH3
, 	Logged E	By:		J.Roby			Dril	I Crew:	J. Tucker	
ΡM	HorVert	. Da	tum:	Not Available			Dril	ling Equipment:	Geoprobe	
9:03	Plunge:			-90 degrees			Dril	ling Method:	See Drilling Method Column	
022 C	Weather:			Overcast			Bor	e Diameter:	100 mm. O.D.	
8/11/2								FIEL	D EXPLORATION	
D: 16				ъ г	ery)	(או				
OTTE	tres	ethoc	/be	quin	ecove	udd)	Log		Surface Condition:	Asphalt
PL(i (me	g Me	le T)	le N	lery Vo Re	FID	ical			
	epth	nillin	amp	amp	R=N	/ D	iraph		Lithologia Dooo	intion
			S	o	ЦЕ	۵.	0		Lithologic Desc	ιμιοπ
	-									
	-									
	-									
	9—									
	-									
	-									
	_									
	-									
	10-									
	_									
	_									
	-									
	11-									
щ	-									
CASTI	-									
IEWC	_									
	12-	oring								
FILTI	-	0								
FICE	-									
P	-									
_										
LOG	-									
NTAL	-									
001A NMEN	-									
2408. VIROI	_									
2023	14—									
ER: CKLF	-									
NUMB	-									
ECT 1 023.6	_									
ROJI	15									
BRAI	-									
NT_L	_									
U_GII	-									
23 JDARI	-									
sTAN								PROJECT NO.:	ROCK	CORING LOG BH3
Maste KLF_								20232408.001A		
gint E: E:		1	F		ר ר	P		DRAWN BY:	AK	
- KIF_			<u> </u>	right People. Right	Soluti	ons.				N Gosford Campus
FILE: TEMF			/	g				CHECKED BY:		Gosford, NSW
gINT gINT								DATE: 15/1	1/22	Page: 2 of 3
Logged By: J.Roby HorVert. Datum: Not Available Plunge:	Recovery (NR=No Recovery) PID / FID (ppmv)		Crew: <u>J. Tr</u> ing Equipment: <u>Geo</u> ing Method: <u>See I</u> Diameter: <u>100</u> FIELD EXI	ucker probe Drilling Method Column mm. O.D. PLORATION Surface Condition: A Lithologic Descr	sphalt					
--	---	----------------------------	--	--	---					
HorVert. Datum: Not Available Plunge: 90 degrees Weather: Overcast image:	Recovery (NR=No Recovery) PID / FID (ppmv)	Crabhical Log	ing Equipment: <u>Geo</u> ing Method: <u>See I</u> Diameter: <u>100</u> FIELD EXI	probe prilling Method Column mm. O.D. PLORATION Surface Condition: A Lithologic Descr	sphalt					
Plunge:Overcast Weather:Overcast Veather:Overcast	Recovery (NR=No Recovery) PID / FID (ppmv)	Crabucal Log	ing Method: <u>See I</u> Diameter: <u>100</u> FIELD EX	Drilling Method Column mm. O.D. PLORATION Surface Condition: A Lithologic Descr	sphalt					
Weather: Overcast (i) p addition (i) (i) addition (i) (i) (i) (i) (i) <th>Recovery (NR=No Recovery) PID / FID (ppmv)</th> <th>Caphrical Log</th> <th>Diameter: 100 FIELD EXI</th> <th>mm. O.D. PLORATION Surface Condition: A Lithologic Descr</th> <th>sphalt</th>	Recovery (NR=No Recovery) PID / FID (ppmv)	Caphrical Log	Diameter: 100 FIELD EXI	mm. O.D. PLORATION Surface Condition: A Lithologic Descr	sphalt					
and and and and and and and	Recovery (NR=No Recovery) PID / FID (ppmv)	Graphical Log	FIELD EX	PLORATION Surface Condition: A Lithologic Descr	sphalt					
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 12 10 10 13 10 10 14 10 10 15 10 10 16 10 10 17 10 10 18 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <	Recovery (NR=No Recovery) PID / FID (ppmv)	Graphical Log		Surface Condition: A	sphalt					
17- 18- 18- 19- 20- 20- 20- 21- The borehole was terminated Rock was encountered at a started at a depth of 6.5 m. coring log for rock coring i										
21- The borehole was terminate Rock was encountered at a started at a depth of 6.5 m. coring log for rock coring i										
	d at approximately 20 depth of 6.5 m. durin Refer to attached co nformation.).8 m. g this prresp	. below ground level. borehole. Coring ponding detailed rock	GROUNDWATER LEY	/ <u>EL INFORMATION:</u> rved at approximately 2.5 m. below ground ackfilled with auger cuttings and bentonite.					
KLEINFEL Bright People. Righ	DER nt Solutions.	P 2 C C	PROJECT NO.: 20232408.001A DRAWN BY: AK CHECKED BY: DK DATE: 15/11/22		CORING LOG BH3 N Gosford Campus 05 Mann Street Gosford, NSW					

Ъ 09:03 PM 16/11/2022

OFFICE FILTER: NEWCASTLE

gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB_EKLF_ENVIRONMENTAL LOG] PROJECT NUMBER: 20232408.001A Klf_gint_master_2023 gINT FILE:

.. Ч 09:03 PM 16/11/2022 PLOTTED:

OFFICE FILTER: NEWCASTLE

gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB_EKLF_ENVIRONMENTAL LOG] PROJECT NUMBER: 20232408.001A Klf_gint_master_2023 gINT FILE:

В≺. 09:03 PM 16/11/2022 PLOTTED:

OFFICE FILTER: NEWCASTLE

[KLF_ENVIRONMENTAL LOG] 20232408.001A **PROJECT NUMBER:** GINT LIBRARY 2023.GLB E:KLF_STANDARD Klf_gint_master_2023 TEMPLATE: gINT FILE:

Date E	Beg	in -	End:	11/10/22			Drill	ing C	ompany: Tuck	ker Environmental	ROCK CORING	LOG BH8
Logge	ed E	By:		J.Roby			Drill	Crev	v: <u>J. Tu</u>	ucker		
HorV	/ert	. Da	tum:	Not Available			Drill	ing E	quipment: Geo	probe		
 Plung	e:			-90 degrees			Drill	ing N	lethod: See D	Drilling Method Column		
Weath	ner:			Overcast			Bore	Diar	meter: 100	mm. O.D.		
							FIELD	EXPL	ORATION		MONITORING WELL CONST	RUCTION
,	oth (metres)	ling Method	nple Type	nple Number	overy (=No Recovery)	/ FID (ppmv)	(ppmv)	iphical Log	Surface	e Condition: Concrete	Completion Method: Flush mount cap in concrete	
Ć	net	Drill	San	San	Rec (NR		FID	Gra	Lithologic D	Description		
	- - 1- - - - 2-		M	BH8_0.5 BH8_1.0 BH8_2.0		0 0 0			FILL: SAND with G sub-angular, yellow Sandy CLAY: medi plasticity, dark grey	ravel: coarse sand, , dry, loose um sand, rounded, low , moist, very soft to soft	Bentonite / Neat Cement Grout 2" SCH 40 Solid PVC Riser Bentonite Chips	
Ţ			X	BH8_3.0		0			Note: consistency c Note: Wet @ 3.2m	change, firm to stiff @ 3.1-3.2m		
	4 BH8_4.0 					0			CLAY with Sand: h dry to moist, very so SAND with Clay: co	igh plasticity, reddish brown, oft to soft parse sand, non-plastic to low		
	BH8_5.0 BH8_6.0 BH8_6.0 BH8_6.0 BH8_6.0					0			CLAY: medium to h dry to moist, soft to Note: colour change	igh plasticity, red and brown, medium e to grey at 6.5m	20/40 Sand Pack 2" SCH 40 Slotted 0.010 PVC Pipe Bentonite Chips	
-									Weathered SILTST white, dry, medium Note:White and Ha	' ONE : high plasticity, red and stiff rd at 12.0m		
	K		E	INFELI Bright People. Right	DE Soluti	R ons.		PROJI 20232 DRAW CHEC DATE:	ECT NO.: 408.001A /N BY: JR KED BY: DK : 15/11/22	ROCK (UON 31	CORING LOG BH8 I Gosford Campus D5 Mann Street Gosford, NSW	Page: 1 of 2

PLOTTED: 16/11/2022 09:03 PM BY: JRoby

OFFICE FILTER: NEWCASTLE

gINT FILE: KIF_gint_master_2023 PROJECT NUMBER: 20232408.001A gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB [_KLF_ENVIRONMENTAL LOG]

	ın -	End:	11/10/22			Drilli	ing C	ompany: Tuc	ker Environmental	ROCK CORING LO	G BH8
Logged B	By:		J.Roby			Drill	Crev	v: <u>J.</u> T	ucker		
HorVert.	. Da	tum:	Not Available			Drilli	ing E	quipment: Geo	pprobe		
Plunge:			-90 degrees			Drilli	ing N	lethod: See	Drilling Method Column		
Weather:			Overcast			Bore	Diar	neter: <u>100</u>) mm. O.D.		
						FIELD	EXPL	ORATION		MONITORING WELL CONSTRUC	CTION
th (metres)	ng Method	ple Type	ple Number	very •No Recovery)	/ FID (ppmv)	(hudd)	hical Log	Surfac	ce Condition: Concrete	Completion Method: Flush mount cap in concrete	
Dept	Drilli	Sam	Sam	Reco (NR=	DIA	FID	Grap	Lithologic	Description		
										Bentonite / Neat Cement — Grout	
25	25 The borehole was terminated at approxime Rock was encountered at a depth of 12.4 m. 26						. below is bore	/ ground level. hole. Coring	GROUNDWATER LEV/ ✓ Groundwater was obser surface during drilling. <u>GENERAL NOTES:</u> A PID (ppmv) was used A 50 mm. diameter PVC of 9 m. The rock coring was bac	EL INFORMATION: ved at approximately 3 m. below groun for environmental field screening. C casing was drilled to a depth ckfilled with auger cuttings.	d
						F	PROJE 202324	ECT NO.: 408.001A	ROCK	CORING LOG BH8	
		EI Br	INFELI ight People. Right	DE Soluti	ons.		DRAW CHEC DATE:	/N BY: JR KED BY: DK 15/11/22	UON 30 C	l Gosford Campus)5 Mann Street Gosford, NSW Pao	e: 2 of 2

PLOTTED: 16/11/2022 09:03 PM BY: JRoby

OFFICE FILTER: NEWCASTLE

OFFICE FILTER: NEWCASTLE

Ъ 09:03 PM 16/11/2022

OFFICE FILTER: NEWCASTLE

gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB_EKLF_ENVIRONMENTAL LOG] PROJECT NUMBER: 20232408.001A Klf_gint_master_2023 gINT FILE:

.. Ч 09:03 PM 16/11/2022

OFFICE FILTER: NEWCASTLE

PROJECT NUMBER: 20232408.001A

gINT FILE: KIf_gint_master_2023

Date Begin	- End:		27/4/23			Drilling	g Comp	pany: FICO	Group	B	ORING LOG BH9
Logged By:			M. Mathews			Drill C	rew:	Shau	n		
HorVert. D)atum:		Not Available			Drilling	g Equip	ment: Truck	nounted drilling rig, FG101		
Plunge:			-90 degrees			Drilling	g Metho	od: <u>Contin</u>	uous Flight Auger		
Weather:			Clear, 23 deg C			Auger	Diame	ter: 100 n	nm. O.D.		
						FIEL	.D EXPL	ORATION		MONITORING WELL CONST	RUCTION
metres)	Method	Type	· Number	y Recovery)	D (ppmv)	mv)	al Log	Surfa	ce Condition: Concrete	Completion Method: Flush mount cap in concrete	
epth (rilling	ample	ample	IR=No	D/FI	l g	raphic				
		00 I	ő	re E		<u> </u>	0		hologic Description	Nest Concre	
	1						× ×-	Silty CLAY with Sand (CH): high plasticity, dark		
•	1						* ×-	brown to dark grey, fine su	ubangular to rounded	Bentonite Ch	
							* ×-				
										2" SCH 40 Solid PVC Ri	ser –
-							×- ×				
-							×				ØĦŦ
								CLAY with Silt (CH): high	plasticity, orange-brown,		
1-	4						===				
-	-						===				
-											
-							===				
	-						===	with white mottling		9/16 Cond D	·*
										0/10 34/10 P	
-							===				
- 2-										2" SCH 40 Slotted 0.0	
-										PVC P	ipe
	-						===				
							===				
•											
								changing to red in colour;			
	-										
							===				
- -											
- - - - - - - -	-	The bo	ore was terminated at approxim	mately 3 m. b	elow grou	ind level.			GROUNDWATER LEVEL II Groundwater was not obser <u>GENERAL NOTES:</u> A PID (ppmv) was used for A 50 mm. diameter PVC cas of 3 m.	VFORMATION: ved during drilling or after completion. environmental field screening. sing was drilled to a depth	
4-	1										
•	1										
	4										
	-										
	1										
•	1										
							PROJEC	CT NO.:			
							2023240)8.001A			
							DRAWN	BY: MM			
							CHECK	ED BY: PB		305 Mann Street	
										Gosford, NSW	
							DATE:				Page: 1 of 1

ſ	Date Begin -	End:		27/4/23			Drilling	g Comp	any: <u>FICO</u>	Group		BORING	LOG BH	-110
	Logged By:			M. Mathews			Drill C	rew:	Shau	n				
	HorVert. D	atum:		Not Available			Drilling	g Equip	ment: Truck r	nounted drilling rig, FG101				
	Plunge:			-90 degrees			Drilling	y Metho	od: Continu	uous Flight Auger				
┟	Weather:	1		Clear, 22 deg C			Auger	Diame	ter: <u>100 n</u>	1m. O.D.	1			
							FIEL	D EXPL	ORATION		MONITORING WELL C	ONSTRUCTI	ON	
	(metres)	Method	e Type	e Number	ry c Recovery)	(vmqq) Ol	(AMK	cal Log	Surfa	ce Condition: Concrete	Completion Method: Flush mount cap in concrete			
)epth (Drilling	ample	šample	R=N(<u>п</u> /п	l Ö	Sraphi		pologic Departmention				
┢			5	0		<u>а</u>	<u> </u>	P & 4			Neat C	concrete —		
	-							* ×- *	Silty CLAY with Sand (CH): high plasticity, dark				
	-							x - *	brown to dark grey, fine su sand, moist	ibangular to rounded				
	-							×- ×					Ø.	ĦØ
	-							* ×-						ΗØ
	-								CLAY with Silt (CH): high	plasticity, orange-brown,			ØF	ĦØ
	1								moist, iim		Bentoni	ite Chips —		
	-													HØ
	-											(0 D'	Ø.	
	-							===	with white mottling		2" SCH 40 Solid P1	VC Riser —		
	-								widt white motaling				Ø.	ĦØ
	- 2													HØ
	-													HØ
	-													HØ
	-													HØ
	-								changing to red in colour; some coarse gravel					
	-								changing to pink					
									unanging to print					40
	-													
	-													
	-												E	
	-												E	8
	-												E	ŧ I
	4								white to light grev		8/16 Sa	Ind Pack —		
	-								writte to light grey				Ē	₿
	-												E	
	-										2" SCH 40 Slott	ed 0.010 —		
	-				1			===			P	VC Pipe	F	₿
	-													E
	5				1									8
	-				1			===						8
	-				1			===						8
	-				1			===					E	
	-				1			===						
	-				1									
	6 -				1	L	J						<u> </u>	
	-		The b	ore was terminated at approxim	ately 6 m. b	elow grou	ind level.			GROUNDWATER LEVEL INFO Groundwater was not observed	RMATION: during drilling or after completion.			
	_	The bore was terminated at approximately 6 m. below g								GENERAL NOTES: A PID (ppmv) was used for envir	onmental field screening.			
	-	-								A 50 mm. diameter PVC casing of 6 m.	was drilled to a depth			
'	-													
Ĺ	-													
, [T	PROJEC	CT NO.:	BO				
								2023240	8.001A					
									DV. 144					
								UKAWN	DT: MM	uc	N Gosford Campus			
								CHECK	ED BY: PB		305 Mann Street			
								DATE:			5051010, 1434V		Pane ^{, 4}	of 1
L										1				

gINT FILE: ME_gML_msster_2023 PROJECT NUMBER: 20232408.001A OFFICE FILTER: NEWCASTLE gINT TEMPLATE: E-KLF_STANDARD_GINT_LIBRARY_2023.41B [_KLF_ENVIRONMENTAL LOG (AUS)]

PLOTTED: 09/05/2023 11:43 AM BY: MMathews

oggod Dur						Dunna	y oomp		Gloup	BURIN	NG LOG BH1
Loggeu by.			M. Mathews			Drill C	rew:	Shau	n	L	
lorVert. Da	atum:		Not Available			Drillin	g Equip	ment: Truck	nounted drilling rig, FG101		
Plunge:			-90 degrees			Drilling	g Metho	d: <u>Contin</u>	uous Flight Auger		
Weather:			Clear, 24 deg C			Auger	Diamet	ter: 100 n	nm. O.D.		
						FIEL	D EXPL	ORATION		MONITORING WELL CONSTRU	CTION
(metres)	Method) Type	s Number	ry o Recovery)	(ppmv)	(nun	cal Log	Surfa	ace Condition: Concrete	Completion Method: Flush mount cap in concrete	
) epth (Drilling	ample	šample	R=N	D/F	0. 19	Graphi		pologic Description	-	
	-	<i></i>			<u> </u>	<u> </u>		CONCRETE		Neat Concrete	
								FILL Sandy Silty CLAY wir plasticity, dark brown to da sand, fine to medium angu gravel-sized brick pieces	th Gravel (CH): high ark grey, fine to medium Jar gravel, some	Bentonite Chips 2" SCH 40 Solid PVC Riser	
1 - - - -							× × × × × × × × × × × × × × × × × × ×	Silty SAND with Clay (SM plasticity fines, moist becoming wet, and light be): fine, brown-grey, high rown-grey		
- - 2 - - - -							x x x x x 1111111	CLAY with Sand and Silt (brown-yellow mottled red,	CH): high plasticity, light fine sand, wet	8/16 Sand Pack 2" SCH 40 Slotted 0.010 PVC Pipe	
- - - 3 - - -	The bore was terminated at approximately 3 m. below				elow grou	nd level.		red	GROUNDWATER LEVEL IN Groundwater was encountere <u>GENERAL NOTES</u> : A PID (ppmv) was used for en A 50 mm. diameter PVC casi	ORMATION: d at 1.5m vironmental field screening. g was drilled to a depth	
- - - - - - - - - - - - - - - - - - -	The bore was terminated at approximately 3 m. below								of 3 m.		
							PROJEC 2023240	IT NO.: 8.001A	E	ORING LOG BH11	
						-					

PLOTTED: 09/05/2023 11:44 AM BY: MMathews

gINT FILE: ML_ght_meder_2023 PROJECT NUMBER: 20232408.001A OFFICE FILTER: NEWCASTLE gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.4LB [_KLF_ENVIRONMENTALLOG (AUS)]

APPENDIX C – GROUNDWATER MONITORING RESULTS

Well ID	Date	DTW (mBTOC)	Total Well Depth (m)	Dry Indicator (Y/N)	LNAPL (mBTOC)	LNAPL Thickness (m)	Remark	Technician
DLI1	23-Nov-22	4.442	6.55	Ν	ND	ND	Light brown, NO/NS, slow recharge	M. Ferguson
DUT	27-Apr-23	4.029	6.015	Ν	ND	ND	Light brown, NO/NS	A. King
DU7	23-Nov-22	3.23	6.81	Ν	ND	ND	Pink/orange, moderate HC odour, NS, moderate recharge	M. Ferguson
DU1	27-Apr-23	1.903	6.667	Ν	ND	ND	Cloudy pinky brown, low HC odour, no sheen	A. King
DLIQ	23-Nov-22	2.239	6.98	Ν	ND	ND	Orange, NO/NS, fast recharge	M. Ferguson
DUD	27-Apr-23	2.189	6.871	N	ND	ND	Cloudy light brown, no odour, no sheen	A. King

DTW = Depth to water mBTOC = Metres below top of casing m = Metres ND = Not detected

		TEMP	DO	SC	TDS	PH	ORP	TURB
Well ID	Date	deg C	ppm	uS/cm	mg/L	pH units	mV	NTU
<u>ВН1</u>	23-Nov-22	21.1	1.65	420	273	5.71	118	
DUI	27-Apr-23	26.3	4.33	224.2	142	5.47	194	943.22
DU7	23-Nov-22	18	4.93	304	197	7.34	49	
DU1	27-Apr-23	19.0	3.00	244.7	179	4.87	158.6	220.12
рцо	23-Nov-22	18.6	2.71	300	195	5.82	112	
DUD	27-Apr-23	19.5	3.20	245.3	178	5.08	241.9	573.34

						BT	EXN					Total P	etroleum Hydroc	arbons				Total R	ecoverable Hydrocarl	bons		
	Analyte		Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	Sum of BTEX	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	C ₁₀ - C ₃₆ sum	C ₆ - C ₁₀	C_6 - C_{10} minus BTEX (F1)	>C ₁₀ - C ₁₆	> C_{10} - C_{16} minus Naphthalene (F2)	>C ₁₆ - C ₃₄	>C ₃₄ - C ₄₀	>C ₁₀ - C ₄₀ (sum)
	LOR		1.0	2.0	2.0	2.0	2.0	2.0	5.0	1.0	20	50	100	50	50	20	20	100	100	100	100	100
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
ANZG 20	18 FRESHWATER 9	95% LOSP	950	180	80		350**		16**													
CRC CARE HS	SLS IMW - GW - SA	AND 2 TO <4M	NL	NL	NL			NL	NL								NL		NL			
NEPM 2013	HSL C - GW - SANI	D - 2 TO <4M	NL	NL	NL			NL	NL								NL		NL			
NHMRC - RISI	K IN RECREATION	AL WATER X10	10	8000	3000			6000														
Sample Name	Sample Date	SWL (mBTOC)																				
BH1	23-Nov-22	4.442	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
DIT	27-Apr-23	4.029	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
BH2	23-Nov-22	3.230	8.0	< 2.0	29	7.0 *	< 2.0	9.0 *	19	41	140	440	400 *	< 50	920 *	280 *	210 *	450	430	300 *	< 100	890 *
DIT/	27-Apr-23	1.903	12	< 2.0	16	3.0	3.0	6.0	39	34	440	620	< 100	< 50	620	450	420	650	610	< 100	< 100	650
вно	23-Nov-22	2.239	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
סרום	27-Apr-23	2.189	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100

- - Not analysed

< - Less than laboratory limit of reporting

ANZECC - Australia and New Zealand Environment and Conservation Council

NL - Not limiting

µg/L - Micrograms per litre BTEXN - Benzene, toluene, ethylbenzene, total xylenes, naphthalene **Bold** indicates a detection above the laboratory limit of reporting

"*" denotes duplicate/triplicate sample result adopted for analytical use due to RPD >50%

Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) RPD - Relative Percentage Difference

**- Low reliability, see ANZECC 8.3.7.7

Criteria:

Australian and New-Zealand Guidelines (2018) Freshwater 95% Level Of Species Protection Toxicant Default Guideline Values

The Cooperative Research Centre for Contamination Assessment and Remediation of the Environment - Water Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater for Vapour Intrusion for Intrusive Maintenance Worker Shallow Trench in Sand The National Environment Protection Measures (2013) - Health Screening Levels - Table 1A(4) - Groundwater for Vapour Intrusion - Recreational and Open Space - Sand National Health and Medical Research Council - Guidelines for Managing Risks in Recreational Water Factor 10

											Anion	s and Cations											Alkalinity				Inorganics	
	Analyte		Sodium	Calcium	Magnesium	Potassium	Sulphate	Chloride	Fluoride	Reactive phosphorus as P	, Total Phosphorus	Nitrite as N	Nitrate as N	Nitrite + Nitrate as N	Total Ammonia as Nitrogen	Total Kjeldahl Nitrogen as N	Nitrogen	Total Cations	Total Anions	Sodium Adsorption Ratio	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Hydroxide Alkalinity as CaCO3	Total Alkalinity as To CaCO3	otal Hardness as CaCO3	Electrical Conductivity @ 25°C	Total Dissolved Solids	pН
	LOR		1.0	1.0	1.0	1.0	1.0	1.0	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.1	0.1	0.01	0.01	0.01	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.01
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	-	mg/L	mg/L	mg/L	mg/L	mg/L	μS/cm	mg/L	pH units
ANZG 20	18 FRESHWATER 9	95% LOSP											*		0.9													
NHMRC - RIS	K IN RECREATION	IAL WATER X10					5000		15																			
Sample Name	Sample Date	SWL (mBTOC)																										
	23-Nov-22	4.442	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	429	-	5.8
DUT	27-Apr-23	4.029	39	2.0	< 1.0	< 1.0	37	26	< 0.1	< 0.01	0.73	< 0.01	0.1	0.1	0.1	< 0.1	< 0.1	1.8	1.72	6.39	11	< 1.0	< 1.0	11	5.0	219	142	5.48
DU7	23-Nov-22	3.230	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	308	-	5.48
רוט/	27-Apr-23	1.903	27	3.0	3.0	4.0	74	22	< 0.1	< 0.01	0.06	< 0.01	< 0.01	< 0.01	0.09	0.2	0.2	2.46	2.22	2.64	3.0	< 1.0	< 1.0	3.0	20	276	179	4.85
RHQ	23-Nov-22	2.239	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	317	-	5.83
סרום	27-Apr-23	2.189	30	7.0	4.0	5.0	61	28	< 0.1	< 0.01	0.24	< 0.01	2.74	2.74	0.01	0.6	3.3	2.11	2.12	2.24	3.0	< 1.0	< 1.0	3.0	34	269	175	5.06

Notes: - - Not analysed

- Less than laboratory limit of reporting
 LOR - Laboratory limit of reporting
 mg/L - Milligrams per litre
 µS/cm - Microsiemens per centimeter

Bold indicates a detection above the laboratory limit of reporting *- In the absence of an ANZG (2018) default guideline value, refer to the "Grading" guideline values published in the NIWA report, which were used to inform the current New Zealand nitrate toxicity. Criteria:

Australian and New-Zealand Guidelines (2018) Freshwater 95% Level Of Species Protection Toxicant Default Guideline Values National Health and Medical Research Council - Guidelines for Managing Risks in Recreational Water Factor 10

										Me	tals							
	Analyte		Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Vanadium	Zinc
	LOR		0.001	0.001	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	0.001	0.001	0.0001	0.001	0.01	0.01	0.005
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
ANZG 20	18 FRESHWATER 9	95% LOSP	0.013			0.94	0.0002	0.001		0.0014		0.0034	1.9	0.0006	0.011*	0.011		0.008
NHMRC - RISI	K IN RECREATION	AL WATER X10	0.1	20	0.6	40	0.02	0.5		20		0.1	5	0.01	0.2	0.1		
Sample Name	Sample Date	SWL (mBTOC)																
BH1	23-Nov-22	4.442	< 0.001	-	-	-	< 0.0001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.0001	0.004	-	-	0.015
DIT	27-Apr-23	4.029	< 0.001	0.03	< 0.001	0.11	< 0.0001	< 0.001	0.001	0.004	0.17	< 0.001	0.049	< 0.0001	0.004	< 0.01	< 0.01	0.01
BH7	23-Nov-22	3.230	< 0.001	-	-	-	< 0.0001	0.001	-	0.007	-	0.001	-	< 0.0001	0.018	-	-	0.074
DI 17	27-Apr-23	1.903	0.001	0.037	< 0.001	0.07	< 0.0001	< 0.001	0.002	0.002	15	< 0.001	0.033	< 0.0001	0.006	< 0.01	< 0.01	0.047
вня	23-Nov-22	2.239	< 0.001	-	-	-	< 0.0001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.0001	0.003	-	-	0.024
ыпо	27-Apr-23	2.189	< 0.001	0.085	< 0.001	0.06	< 0.0001	< 0.001	< 0.001	0.006	< 0.05	< 0.001	0.018	< 0.0001	0.001	< 0.01	< 0.01	0.006

- - Not analysed

< - Less than laboratory limit of reporting ANZECC - Australia and New Zealand Environment and Conservation Council

mg/L - Milligrams per litre

Bold indicates a detection above the laboratory limit of reporting

Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) *- Low reliability, see ANZECC 8.3.7.1

Criteria:

Australian and New-Zealand Guidelines (2018) Freshwater 95% Level Of Species Protection Toxicant Default Guideline Values National Health and Medical Research Council - Guidelines for Managing Risks in Recreational Water Factor 10

												Polycyclic Aroma	tic Hydrocarbons							
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[k]fluoranthene	Benzo[b] & e Benzo[j]fluoranthe ne	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ
	LOR		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	1.0	1.0	1.0	0.5	0.5
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L
ANZG 20	18 FRESHWATER 9	95% LOSP	16*				2	0.4	1.4						0.2					
NHMRC - RIS	K IN RECREATION	AL WATER X10													0.1					
Sample Name	Sample Date	SWL (mBTOC)																		
RH1	23-Nov-22	4.442	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
DUT	27-Apr-23	4.029	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
DU7	23-Nov-22	3.230	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	10	< 0.5
DU1	27-Apr-23	1.903	19	< 1.0	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	20	< 0.5
рцо	23-Nov-22	2.239	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
БПО	27-Apr-23	2.189	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5

- - Not analysed

< - Less than laboratory limit of reporting ANZECC - Australia and New Zealand Environment and Conservation Council

August a result and New Zealand Environment and conservation council µg/L - Micrograms per litre
 Bold indicates a detection above the laboratory limit of reporting
 Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline)
 *- Low reliability, see ANZECC 8.3.7.7

Criteria: Australian and New-Zealand Guidelines (2018) Freshwater 95% Level Of Species Protection Toxicant Default Guideline Values National Health and Medical Research Council - Guidelines for Managing Risks in Recreational Water Factor 10

			Polychlorinated Biphenyls
	Analyte		Total PCBs
	LOR		1.0
	Units		µg/L
Sample Name	Sample Date	SWL (mBTOC)	
BH1	23-Nov-22	4.442	< 1.0
BH7	23-Nov-22	3.230	< 1.0
BH8	23-Nov-22	2.239	< 1.0

- - Not analysed

< - Less than laboratory limit of reporting

LOR - Laboratory limit of reporting

μg/L - Micrograms per litre PCB - Polychlorinated Biphenyl

														Organoo	chlorine Pesticides	S																			Organophos	sphorus Pesticid	les								
	Analyte		4,4'-DDE	4,4'-DDD	4,4'-DDT	alpha-BHC	beta-BHC	gamma-BHC	delta-BHC	Aldrin	Heptachlor epoxide	cis-Chlordane	trans-Chlordane	Chlordane	alpha-Endosulfan	beta-Endosulfan	Endosulfan sulfate	e Endrin	Endrin aldehyde	Endrin ketone	Dieldrin	Heptachlor F	lexachlorobenzene	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Azinphos methyl	Bromophos-ethyl	Carbophenothion	Chlorfenvinphos	Chlorpyriphos	Chlorpyriphos- methyl	Demeton-s-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenamiphos	Fenthion	Malathion Mo	onocrotophos	Parathion Pa	arathion-methyl Pirim	iphos-ethyl Pro	thiophos
	LOR		0.5	0.5	2.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2.0	2.0	2.0	0.5	0.5
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
ANZG	018 FRESHWATER 95	% LOSP			0.01			0.2						0.08				0.02				0.09	0.1				0.02				0.01			0.01		0.15*				0.05		0.004			
NHMRC - R	SK IN RECREATIONAL	WATER X10			90			100						20								3		3000	3		300	100	5	20	100			40	50	70	40	5	70	700	20	200	7	5	
Sample Name	Sample Date	SWL (mBTOC)																																											
DU1	23-Nov-22	4.442	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
БПІ	27-Apr-23	4.029	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
DU 7	23-Nov-22	3.230	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
DH7	27-Apr-23	1.903	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
рцо	23-Nov-22	2.239	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
БПО	27-Apr-23	2.189	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5

Notes: - - Not analysed < - Less than laboratory limit of reporting ANZECC - Australia and New Zealand Environment and Conservation Council

LOR - Laboratory limit of reporting µg/L - Micrograms per litre DDT - Dichlorodiphenyltrichloroethane DDE - Dichlorodiphenyldichloroethylene

DDD - Dichlorodiphenyldichloroethane *- Low reliability, see ANZECC 8.3.7.16

Criteria: Australian and New-Zealand Guidelines (2018) Freshwater 95% Level Of Species Protection Toxicant Default Guideline Values National Health and Medical Research Council - Guidelines for Managing Risks in Recreational Water Factor 10

																	PFAS Compounds	5														Sum of PFAS	
	Analyte		Perfluorooctane sulfonamide (FOSA)	e N-Methyl- perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethano l (MeFOSE)	N-Ethyl perfluorooctane o sulfonamidoethan I (EtFOSE)	N-Ethyl perfluorooctane o sulfonamidoaceti c acid (EtFOSAA)	N-Methyl perfluorooctane sulfonamidoacet c acid (MeFOSAA)	Perfluorobutanc c acid (PFBA)	oi Perfluoro-n- pentanoic aicd (PFPeA)	Perfluorohexanoio acid (PFHxA)	: Perfluoroheptanoi c acid (PFHpA)	Perfluorooctanoate (PFOA)	e Perfluorononanoi c acid (PFNA)	Perfluorodecano c acid (PFDA)	i Perfluorotridecan ic acid (PFTrDA)	o Perfluoroundecano) ic acid (PFUnDA)	Perfluorododecanc ic acid (PFDoDA)	Perfluorotetradeco noic acid (PFTeDA)	a Perfluorobutanesu fonic acid (PFBS)	ul Perfluoropentan sulfonic acid (PFPeS)	e Perfluorohexanest fonic acid (PFHxS	ul Perfluoroheptane) sulfonate (PFHpS)	e Perfluorooctanesul onic acid (PFOS)	⁻ Perfluorodecanesu Ifonic acid (PFDS)	4:2 Fluorotelomer Sulfonate (4:2 FTS)	r 6:2 Fluorotelomer Sulfonate (6:2 FtS	8:2 Fluorotelomer) sulfonate (8:2 FtS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)	Sum of PFAS
	LOR		0.02	0.05	0.05	0.05	0.05	0.02	0.02	0.1	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.02	0.01	0.02	0.01	0.02	0.05	0.05	0.05	0.05	0.01	0.01	0.01
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
PFAS NEMP 202	20 - HUMAN HEALT	H RECREATION												10									2		2						2		
PFAS NEMP	2020 FRESHWATER	r 99% losp												19											0.00023								
Sample Name	Sample Date	SWL (mBTOC)																															
BH1	23-Nov-22	4.442	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
DITI	27-Apr-23	4.029	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
DU7	23-Nov-22	3.230	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
DU/	27-Apr-23	1.903	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
рцо	23-Nov-22	2.239	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.05	0.05
БПО	27-Apr-23	2.189	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	0.04	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	0.04	0.05	0.05

Notes: - - Not analysed

< - Less than laboratory limit of reporting

μg/L - Micrograms per litre Bold indicates a detection above the laboratory limit of reporting Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline)

Criteria: Per- and Por-Fluoroalkyl Substances National Environment Protection Measures - Human Health Guideline Values - Recreational Water Quality Guideline Value (NHMRC 2019) Per- and Por-Fluoroalkyl Substances National Environment Protection Measures Freshwater 99% Species Protection - High Conservation Value Systems

				Phenolic	Compounds (Non-Ch	lorinated)				Pheno	olic Compounds (Chlo	orinated)		
	Analyte		Phenol	2-Methylphenol (o- Cresol)	3- & 4- Methylphenol (m&p cresol)	2-Nitrophenol	2,4-Dimethylphenol	2-Chlorophenol	4-Chloro-3- methylphenol	2,4- Dichlorophenol	2,6-Dichlorophenol	2,4,6- Trichlorophenol	2,4,5- Trichlorophenol	Pentachlorophenol
	LOR			1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
ANZG 20	18 FRESHWATER 9	5% LOSP	320					490		160		20		10
NHMRC - RISI	K IN RECREATIONA	AL WATER X10						3000		2000		200		100
Sample Name	mple Name Sample Date SWL (mBTOC)													
BH1	BH1 27-Apr-23 4.029		< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
BH7	27-Apr-23	1.903	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
BH8	27-Apr-23	2.189	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0

- - Not analysed

< - Less than laboratory limit of reporting

ANZECC - Australia and New Zealand Environment and Conservation Council

LOR - Laboratory limit of reporting

μg/L - Micrograms per litre *- Low reliability, see ANZECC 8.3.7.10

Criteria:

Australian and New-Zealand Guidelines (2018) Freshwater 95% Level Of Species Protection Toxicant Default Guideline Values National Health and Medical Research Council - Guidelines for Managing Risks in Recreational Water Factor 10

						BT	EXN					Total F	Petroleum Hydrod	carbons				Total R	ecoverable Hydrocar	bons		
	Analyte		Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	Sum of BTEX	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	C ₁₀ - C ₃₆ sum	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)	>C ₁₀ - C ₁₆	$>C_{10}$ - C ₁₆ minus Naphthalene (F2)	>C ₁₆ - C ₃₄	>C ₃₄ - C ₄₀	>C ₁₀ - C ₄₀ (sum)
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Sample Name	Sample Date	Sample Type																				
BH7_23112022	23-Nov-22	Primary	8.0	< 2.0	29	4.0	< 2.0	4.0	19	41	140	440	< 100	< 50	440	150	110	450	430	< 100	< 100	450
QC01_23112022	23-Nov-22	Duplicate	8.0	< 2.0	30	4.0	< 2.0	4.0	20	42	130	460	< 100	< 50	460	160	120	470	450	< 100	< 100	470
Relative	Percentage Differe	ence	0%	NC	3%	0%	NC	0%	5%	2%	7%	4%	NC	NC	4%	6%	9%	4%	5%	NC	NC	4%
BH7_23112022	23-Nov-22	Primary	8.0	< 2.0	29	4.0	< 2.0	4.0	19	41	140	440	< 100	< 50	440	150	110	450	430	< 100	< 100	450
QC01A_23112022	23-Nov-22	Triplicate	11	< 1.0	47	7.0	2.0	9.0	30	-	200	520	400	< 100	920	280	210	590	560	300	< 100	890
Relative	Percentage Differe	ence	32%	NC	47%	55%	0%	77%	45%	NC	35%	17%	120%	NC	71%	60%	63%	27%	26%	100%	NC	66%
BH1_27042023	27-Apr-23	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
QC01_27042023	27-Apr-23	Duplicate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
Relative	Percentage Differe	ence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH1_27042023	27-Apr-23	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
QC01A_27042023	27-Apr-23	Triplicate	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0	< 10	-	< 20	< 50	< 100	< 100	< 100	< 20	< 20	< 50	< 50	< 100	< 100	< 100
Relative	Percentage Differe	ence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

- Not analysed
 - Less than laboratory limit of reporting
 NC - Not calculated

µg/L - Micrograms per litre BTEXN - Benzene, toluene, ethylbenzene, total xylenes, naphthalene

Bold indicates a detection above the laboratory limit of reporting

Orange highlighting indicates an RPD in excess of 30% RPD - Relative Percentage Difference

										Me	tals							
	Analyte		Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Vanadium	Zinc
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Units ample Name Sample Date Sample Typ 17, 23112022 23, Nov 22 Primary																	
BH7_23112022	ample Name Sample Date Sample Type 17_23112022 23-Nov-22 Primary			-	-	-	< 0.0001	0.001	-	0.007	-	0.001	-	< 0.0001	0.018	-	-	0.074
QC01_23112022	23-Nov-22	Duplicate	< 0.001	-	-	-	< 0.0001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.0001	0.01	-	-	0.022
Relative	Percentage Differ	rence	NC	NC	NC	NC	NC	0%	NC	150%	NC	0%	NC	NC	57%	NC	NC	108%
BH7_23112022	23-Nov-22	Primary	< 0.001	-	-	-	< 0.0001	0.001	-	0.007	-	0.001	-	< 0.0001	0.018	-	-	0.074
QC01A_23112022	23-Nov-22	Triplicate	< 0.001	-	-	-	< 0.0002	< 0.001	-	0.003	-	< 0.001	-	< 0.0001	0.021	-	-	0.053
Relative	Percentage Differ	rence	NC	NC	NC	NC	NC	0%	NC	80%	NC	0%	NC	NC	15%	NC	NC	33%
BH1_27042023	27-Apr-23	Primary	< 0.001	0.03	< 0.001	0.11	< 0.0001	< 0.001	0.001	0.004	0.17	< 0.001	0.049	< 0.0001	0.004	< 0.01	< 0.01	0.01
QC01_27042023	27-Apr-23	Duplicate	< 0.001	0.028	< 0.001	0.13	< 0.0001	< 0.001	0.001	< 0.001	0.21	< 0.001	0.046	< 0.0001	0.002	< 0.01	< 0.01	0.006
Relative	Percentage Differ	rence	NC	7%	NC	17%	NC	NC	0%	120%	21%	NC	6%	NC	67%	NC	NC	50%
BH1_27042023	Relative Percentage DifferenceBH1_2704202327-Apr-23Primary			0.03	< 0.001	0.11	< 0.0001	< 0.001	0.001	0.004	0.17	< 0.001	0.049	< 0.0001	0.004	< 0.01	< 0.01	0.01
QC01A_27042023	27-Apr-23	Triplicate	< 0.001	0.03	< 0.001	0.14	< 0.0002	< 0.001	0.001	0.001	0.23	< 0.001	0.049	< 0.0001	0.002	-	< 0.005	0.007
Relative	Percentage Differ	rence	NC	0%	NC	24%	NC	NC	0%	120%	30%	NC	0%	NC	67%	NC	NC	35%

- - Not analysed

< - Less than laboratory limit of reporting

NC - Not calculated

mg/L - Milligrams per litre

Bold indicates a detection above the laboratory limit of reporting

Orange highlighting indicates an RPD in excess of 30% RPD - Relative Percentage Difference

												Polycyclic Aroma	tic Hydrocarbons							
	Analyte		Naphthalene	Acenaphthylene	e Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[k]fluoranthene	Benzo[b] & Benzo[j]fluoranthe ne	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrer TEQ
	Units		µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L
Sample Name	Sample Date	Sample Type																		
BH7_23112022	23-Nov-22	Primary	19	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	10	< 0.5
QC01_23112022	23-Nov-22	Duplicate	20	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	10	< 0.5
Relative	Relative Percentage Difference		5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	2%	NC
BH7_23112022 23-Nov-22 Primary		19	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	10	< 0.5	
QC01A_23112022	23-Nov-22	Triplicate	30	< 1.0	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	16	-
Relative	e Percentage Differ	ence	45%	NC	0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	42%	NC
BH1_27042023	27-Apr-23	Primary	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
QC01_27042023	27-Apr-23	Duplicate	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
Relative	e Percentage Differ	ence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH1_27042023	27-Apr-23	Primary	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
QC01A_27042023	27-Apr-23	Triplicate	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-
Relative	BH7_2311202223-Nov-22PrimaryC01A_2311202223-Nov-22TriplicateRelativePercentageDifferenceBH1_2704202327-Apr-23PrimaryC01_2704202327-Apr-23DuplicateRelativePercentageDifference3H1_2704202327-Apr-23PrimaryC01A_2704202327-Apr-23TriplicateRelativePercentageDifferenceBH1_2704202327-Apr-23PrimaryC01A_2704202327-Apr-23TriplicateRelativePercentageDifference		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

- - Not analysed < - Less than laboratory limit of reporting NC - Not calculated

µg/L - Micrograms per litre **Bold** indicates a detection above the laboratory limit of reporting Orange highlighting indicates an RPD in excess of 30% RPD - Relative Percentage Difference

			Polychlorinated Biphenyls
	Analyte		Total PCBs
	Units		µg/L
Sample Name	Sample Date	Sample Type	
BH7_23112022	23-Nov-22	Primary	< 1.0
QC01_23112022	23-Nov-22	Duplicate	< 1.0
Relative	Percentage Differ	ence	NC
BH7_23112022	23-Nov-22	Primary	< 1.0
QC01A_23112022	23-Nov-22	Triplicate	< 5.0
Relative	Percentage Differ	ence	NC

- - Not analysed

< - Less than laboratory limit of reporting

LOR - Laboratory limit of reporting

NC - Not calculated

µg/L - Micrograms per litre

PCB - Polychlorinated Biphenyl

													Organo	chlorine Pesticides	5																			Organopho	sphorus Pesticide	es								
Analyte		4,4'-DDE	4,4'-DDD	4,4'-DDT	alpha-BHC	beta-BHC	gamma-BHC	delta-BHC	Aldrin	Heptachlor epoxide	cis-Chlordane	trans-Chlordane	Chlordane	alpha-Endosulfan	beta-Endosulfan	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Dieldrin	Heptachlor H	exachlorobenzene	e Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Azinphos methyl	Bromophos-ethyl	Carbophenothion	Chlorfenvinphos	Chlorpyriphos	Chlorpyriphos- methyl	Demeton-s-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenamiphos	Fenthion	Malathion M	onocrotophos	Parathion Pa	arathion-methyl P	Pirimiphos-ethyl	Prothiophos
Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Sample Name Sample Date	Sample Type																																											
BH7_23112022 23-Nov-22	Primary	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
QC01_23112022 23-Nov-22	Duplicate	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
Relative Percentage Diff	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH7_23112022 23-Nov-22	Primary	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
QC01A_23112022 23-Nov-22	Triplicate	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0	-	-	< 20	< 2.0	< 2.0	-	< 2.0	< 2.0	< 2.0	< 2.0	-	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	-	< 2.0
Relative Percentage Diff	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH1_27042023 27-Apr-23	Primary	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
QC01_27042023 27-Apr-23	Duplicate	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
Relative Percentage Diff	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH1_27042023 27-Apr-23	Primary	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5
QC01A_27042023 27-Apr-23	Triplicate	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0	-	-	< 20	< 2.0	< 2.0	-	< 2.0	< 2.0	< 2.0	< 2.0	-	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	-	< 2.0
Relative Percentage Diff	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Notes: - - Not analysed < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting NC - Not calculated µg/L - Micrograms per litre DDT - Dichlorodiphenyltrichloroethane DDF - Dichlorodiphenyltrichloroethane

DDE - Dichlorodiphenyldichloroethylene DDD - Dichlorodiphenyldichloroethane

																	PFAS Compounds	5														Sum of PFAS	
	Analyte		Perfluorooctane sulfonamide (FOSA)	e N-Methyl- perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethano I (MeFOSE)	N-Ethyl perfluorooctane sulfonamidoethan I (EtFOSE)	N-Ethyl perfluorooctane o sulfonamidoaceti c acid (EtFOSAA)	N-Methyl perfluorooctane sulfonamidoaceti c acid (MeFOSAA)	Perfluorobutanoi c acid (PFBA)	Perfluoro-n- pentanoic aicd (PFPeA)	Perfluorohexanoio acid (PFHxA)	c Perfluoroheptanoi c acid (PFHpA)	Perfluorooctanoa (PFOA)	te Perfluorononanoi c acid (PFNA)	Perfluorodecanoi c acid (PFDA)	Perfluorotridecan ic acid (PFTrDA)	o Perfluoroundecanc ic acid (PFUnDA)	Perfluorododecano ic acid (PFDoDA)	Perfluorotetradeca noic acid (PFTeDA)	a Perfluorobutanes fonic acid (PFBS	ul Perfluoropentan sulfonic acid (PFPeS)	e Perfluorohexanesul fonic acid (PFHxS)	Perfluoroheptane sulfonate (PFHpS)	^e Perfluorooctanesulf onic acid (PFOS)	f Perfluorodecanesu Ifonic acid (PFDS)	4:2 Fluorotelomer Sulfonate (4:2 FTS)	6:2 Fluorotelomer Sulfonate (6:2 FtS)	8:2 Fluorotelomer ¹ sulfonate (8:2 FtS) ^s	.0:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)	Sum of PFAS
	Units		µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	μg/L
Sample Name	Sample Date	Sample Type																															
BH7_23112022	23-Nov-22	Primary	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
QC01_23112022	23-Nov-22	Duplicate	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
Relativ	e Percentage Diffe	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH7_23112022	23-Nov-22	Primary	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
QC01A_23112022	23-Nov-22	Triplicate	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	0.01	< 0.05	< 0.1
Relativ	e Percentage Diffe	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%	NC	NC	NC	NC	NC	0%	NC	NC
BH1_27042023	27-Apr-23	Primary	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
QC01_27042023	27-Apr-23	Duplicate	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
Relativ	e Percentage Diffe	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH1_27042023	27-Apr-23	Primary	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
QC01A_27042023	27-Apr-23	Triplicate	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.05	< 0.1
Relativ	e Percentage Diffe	erence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Notes: - - Not analysed < - Less than laboratory limit of reporting EPA - Environment Protection Authority NC - Not calculated

μg/L - Micrograms per litre **Bold** indicates a detection above the laboratory limit of reporting RPD - Relative Percentage Difference

				Phenolic	Compounds (Non-Ch	llorinated)				Pheno	lic Compounds (Chlo	rinated)		
	Analyte		Phenol	2-Methylphenol (o- Cresol)	3- & 4- Methylphenol (m&p cresol)	2-Nitrophenol	2,4-Dimethylphenol	2-Chlorophenol	4-Chloro-3- methylphenol	2,4-Dichlorophenol	2,6-Dichlorophenol	2,4,6- Trichlorophenol	2,4,5- Trichlorophenol	Pentachlorophenol
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Sample Name	Sample Date	Sample Type												
BH1_27042023	27-Apr-23	Primary	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
QC01_27042023	27-Apr-23	Duplicate	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
Relative	Percentage Differ	ence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH1_27042023	11_27042023 27-Apr-23 Primary			< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
QC01A_27042023	27-Apr-23	Triplicate	< 3.0	< 3.0	< 6.0	< 10	< 3.0	< 3.0	< 10	< 3.0	< 3.0	< 10	< 10	< 10
Relative	Percentage Differ	rence	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

- - Not analysed

- Less than laboratory limit of reporting
 LOR - Laboratory limit of reporting
 NC - Not calculated
 µg/L - Micrograms per litre

						BT	EXN					Total F	Petroleum Hydrod	carbons				Total R	ecoverable Hydrocar	bons		
	Analyte		Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	Sum of BTEX	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	C ₁₀ - C ₃₆ sum	C ₆ - C ₁₀	$C_6 - C_{10}$ minus BTEX (F1)	>C ₁₀ - C ₁₆	>C ₁₀ - C ₁₆ minus Naphthalene (F2)	>C ₁₆ - C ₃₄	>C ₃₄ - C ₄₀	>C ₁₀ - C ₄₀ (sun
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Sample Name	Sample Date	Sample Type																				
TB_231122_23112022	23-Nov-22	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
TBLANK_27042023	27-Apr-23	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
RB01_23112022	23-Nov-22	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
RINSATE_27042023	27-Apr-23	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100

< - Less than laboratory limit of reporting µg/L - Micrograms per litre BTEXN - Benzene, toluene, ethylbenzene, total xylenes, naphthalene

	Metals																	
Analyte			Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Vanadium	Zinc
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type																
TB_231122_23112022	23-Nov-22	Trip Blank	< 0.001	-	-	-	< 0.0001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.0001	< 0.001	-	-	< 0.005
TBLANK_27042023	27-Apr-23	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RB01_23112022	23-Nov-22	Rinsate	< 0.001	-	-	-	< 0.0001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.0001	< 0.001	-	-	< 0.005
RINSATE_27042023	27-Apr-23	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005

- Not analysed
 - Less than laboratory limit of reporting mg/L - Milligrams per litre

			Polycyclic Aromatic Hydrocarbons																	
Analyte			Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[k]fluoranthene	Benzo[b] & Benzo[j]fluoranthen e	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ
Units		µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	
Sample Name	Sample Date	Sample Type																		
TB_231122_23112022	23-Nov-22	Trip Blank	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
TBLANK_27042023	27-Apr-23	Trip Blank	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
RB01_23112022	23-Nov-22	Rinsate	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5
RINSATE_27042023	27-Apr-23	Rinsate	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	< 0.5

< - Less than laboratory limit of reporting µg/L - Micrograms per litre
			Polychlorinated Biphenyls
	Analyte		Total PCBs
	Units		µg/L
Sample Name	Sample Date	Sample Type	
TB_231122_23112022	23-Nov-22	Trip Blank	< 1.0
RB01_23112022	23-Nov-22	Rinsate	< 1.0

Notes:

< - Less than laboratory limit of reporting

LOR - Laboratory limit of reporting

µg/L - Micrograms per litre

PCB - Polychlorinated Biphenyl

					Organochlorine Pesticides											Organophosphorus Pesticides																													
	Analyte		4,4'-DDE	4,4'-DDD	4,4'-DDT	alpha-BHC	beta-BHC	gamma-BH	IC delta-BHC	Aldrin	Heptachlor epoxid	e cis-Chlordane	trans-Chlordane	Chlordane	alpha-Endosulfan	beta-Endosulfan	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Dieldrin	Heptachlor He	exachlorobenzene	Methoxychlor S	um of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Azinphos methyl B	romophos-ethyl	Carbophenothion	Chlorfenvinphos	Chlorpyriphos	Chlorpyriphos- methyl D	emeton-s-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenamiphos	Fenthion	Malathion Mo	onocrotophos Pa	rathion Para	athion-methyl Pirimip	phos-ethyl Proth	niophos
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L μ	μg/L μ	ıg/L
Sample Name	Sample Date	Sample Type																																											
TB_231122_23112022	2 23-Nov-22	Trip Blank	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0 <	< 0.5 <	0.5
TBLANK_27042023	27-Apr-23	Trip Blank	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0 <	< 0.5 <	. 0.5
RB01_23112022	23-Nov-22	Rinsate	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0 <	< 0.5 <	. 0.5
RINSATE_27042023	27-Apr-23	Rinsate	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 2.0	< 2.0 <	< 0.5 <	. 0.5

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting µg/L - Micrograms per litre DDT - Dichlorodiphenyltrichloroethane DDE - Dichlorodiphenyldichloroethylene DDD - Dichlorodiphenyldichloroethane

																	PFAS Compounds															Sum of PFAS	
	Analyte		Perfluorooctane sulfonamide (FOSA)	N-Methyl- perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethano l (MeFOSE)	N-Ethyl perfluorooctane sulfonamidoethar I (EtFOSE)	N-Ethyl perfluorooctane sulfonamidoaceti c acid (EtFOSAA)	N-Methyl perfluorooctane sulfonamidoaceti c acid	Perfluorobutanc c acid (PFBA)	pi Perfluoro-n- pentanoic aicd (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoi c acid (PFHpA)	Perfluorooctanoate (PFOA)	Perfluorononanoi c acid (PFNA)	Perfluorodecanoi c acid (PFDA)	Perfluorotridecano ic acid (PFTrDA)	Perfluoroundecanc ic acid (PFUnDA)	Perfluorododecano ic acid (PFDoDA)	Perfluorotetradeca noic acid (PFTeDA)	¹ Perfluorobutanesu fonic acid (PFBS)	l Perfluoropentai sulfonic acid (PFPeS)	^{ne} Perfluorohexanesul ^F fonic acid (PFHxS)	Perfluoroheptane sulfonate (PFHpS)	Perfluorooctanesulf Per onic acid (PFOS) Ifo	rfluorodecanesu onic acid (PFDS)	4:2 Fluorotelomer Sulfonate (4:2 FTS)	6:2 Fluorotelomer Sulfonate (6:2 FtS)	8:2 Fluorotelomer ¹ sulfonate (8:2 FtS)	.0:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)	Sum of PFAS
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Sample Name	Sample Date	Sample Type																															
TB_231122_23112022	23-Nov-22	Trip Blank	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
RB01_23112022	23-Nov-22	Rinsate	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
RINSATE_27042023	27-Apr-23	Rinsate	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01

Notes: < - Less than laboratory limit of reporting µg/L - Micrograms per litre

				Phenolic	Compounds (Non-Ch	lorinated)		Phenolic Compounds (Chlorinated)									
Analyte			Phenol	2-Methylphenol (o- Cresol)	3- & 4- Methylphenol (m&p cresol)	2-Nitrophenol	2,4-Dimethylphenol	2-Chlorophenol	4-Chloro-3- methylphenol	2,4-Dichlorophenol	2,6-Dichlorophenol	2,4,6- Trichlorophenol	2,4,5- Trichlorophenol	Pentachlorophenol			
	Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L			
Sample Name	Sample Date	Sample Type															
TBLANK_27042023	27-Apr-23	Trip Blank	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0			
RINSATE_27042023	27-Apr-23	Rinsate	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0			

Notes:

- Less than laboratory limit of reporting
LOR - Laboratory limit of reporting
µg/L - Micrograms per litre

APPENDIX D – CENTRAL COIAST COUNCIL TRADE WASTE ACCEPTANCE LIMITS

J

Liquid Trade Waste

Acceptance limits and prohibited substances

Definition

Liquid trade waste (LTW) is any discharge to a sewerage system other than domestic waste from a hand wash basin, shower, bath or toilet.

Centra

Counci

Coasț

Central Coast Council is referred to as Council.

Introduction

This Fact Sheet is provided to assist you to treat and dispose of liquid trade waste in an efficient and approved manner.

For further information, please contact Council's Trade Waste Section on 4350 5555.

For LTW application forms, refer to www.centralcoast.nsw.gov.au.

Effluent Improvement Programs

Where there is an existing liquid trade waste discharge and the quality or volume does not meet Council's acceptance limits, the applicant is required to submit an 'Effluent Improvement Program' setting out how Council's requirements will be met. The Effluent Improvement Program must detail the methods and actions proposed to achieve the acceptance limits, and a timetable for implementation of the proposed actions. Such actions may include more intensive monitoring, or improvements to work practices and/or pre-treatment facilities to improve the discharge quality and reliability.

Acceptance Limits

General Acceptance Limits

Parameter	Limits
Flow rate	The maximum daily and instantaneous rate of discharge (kL/h or L/s) is set on the available capacity of the sewer. Large dischargers are required to provide a balancing tank to even out the load on the sewerage works.
BOD ₅ and suspended solids	Normally, approved at 300 mg/L for each of the parameters. Concentration up to 600 mg/L may be accepted.
COD	Normally, not to exceed BOD ₅ by more than three times. This ratio is given as a guide only to prevent the discharge of non-biodegradable waste.
Total dissolved solids	Up to 4000 mg/L may be accepted. Acceptance limits may be reduced depending on available effluent disposal options and will be subject to a mass load limit.
Temperature	Less than 38°C
рН	Within the range of 7.0 to 9.0
Oil and Grease	100 mg/L if the volume of the discharge does not exceed 10% of the design capacity of the treatment works, and 50 mg/L if the volume is greater than 10%.
Detergents	All industrial detergents are to be biodegradable. A limit on the concentration of 50 mg/L (as MBAS) may be imposed on large liquid trade wastes.
Colour	Colour must be biodegradable. No visible colour when diluted to the equivalent dilution afforded by domestic sewage flow.
	Specific limits may be imposed on industrial discharges where colour has a potential to interfere with sewerage treatment processes and the effluent management.
Radioactive substances	If expected to be present (e.g lodine 131 from ablation), acceptance requirements will be set on a case-by-case assessment.

Inorganic compounds		Organic compounds	
Parameter	Maximum concentration (mg/L)	Parameter	Maximum concentration (mg/L)
Ammonia (as N)	50	Benzene	< 0.001
Boron	5	Toluene	0.5
Bromine	5	Ethylbenzene	1
Chlorine	10	Xylene	1
Cyanide	1	Formaldehyde	30
Fluoride	30	Phenolic compounds non-halogenated	1
Nitrogen (total Kjeldahl)	100	Petroleum hydrocarbons ₁	
		1. C6-C9 (flammable)	5
		2. Total Recoverable Hydrocarbons (TRH)	30
Phosphorus (total)	20	Pesticides general (except organochlorine	e 0.1

Wyong Office: 2 Hely St / PO Box 20 Wyong NSW 2259 P (02) 4306 7900 | E ask@centralcoast.nsw.gov.au | W centralcoast.nsw.gov.au | ABN 73 149 644 003

Sulphate (as SO ₄)	500
Sulphide (as S)	1

and organophosphorus)	
Polynuclear aromatic hydrocarbons (PAHs)	5

1 Always ask a laboratory to carry out a silica gel clean up, if other than petroleum products are expected to be present liquid trade waste sample, eg. Animal fats, plant oil, soil, etc.

Metals

Parameter I	Maximum Concentration (mg/L)	Allowed daily mass limits (g/d)
Aluminium	100	-
Arsenic	0.5	2
Cadmium	1	5
Chromium*	3	10
Cobalt	5	15
Copper	5	15
Iron	100	-
Lead	1	5
Manganese	10	30
Mercury	0.01	0.05
Molybdenum	5	15
Nickel	1	5
Selenium	1	5
Silver	2	5
Tin	5	15
Zinc	1	5
Total metals excluding alun manganese	ninium, iron, Less than 30mg/L a requirements	nd subject to total mass loading

* Where hexavalent chromium (Cr^{6+}) is present in the process water, pre-treatment is required to reduce it to the trivalent state (Cr^{3+}), prior to discharge into the sewer.

Note: These limits will generally not be met if the sewage detention time in the pumping station and rising main is greater than 2 to 4 hours, unless the sewage is conditioned by the addition of oxygen or other agent to prevent the generation of hydrogen sulphide gas.

Substances	Deemed Concentration
	(mg/L)
Biochemical Oxygen Demand (BOD ₅)	300
Suspended Solids	300
Total Oil and Grease	50
Ammonia (as Nitrogen)	35
Total Kjeldahl Nitrogen	50
Total Phosphorus	10
Total Dissolved Solids	1000
Sulphate (SO ₄)	50

Deemed concentration of substances in domestic sewerage

Prohibited Substances

Prohibited substances

Organochlorine weedicides, fungicides, pesticides, herbicides and substances of a similar nature and/or wastes arising from the preparation of these substances

Organophosphorus pesticides and/or waste arising from the preparation of these substances

Per- and poly-fluoroalkyl substances (PFAS)

Any substances liable to produce noxious or poisonous vapours in the sewerage system

Organic solvents and mineral oil#

Any flammable or explosive substance[#]

Discharge from "Bulk Fuel Depots"

Discharges from chemicals and/or oil storage areas

Natural or synthetic resins, plastic monomers, synthetic adhesives, rubber and plastic emulsions

Roof, rain, surface, seepage or ground water, unless specifically permitted (clause 137A of the Local Government (Genera) Regulation 2021)

Solid matter#

Disposable products including wet wipes, cleaning wipes, colostomy bags, cat litter and other products marketed as flushable

Any substance assessed as not suitable to be discharged into the sewerage system

Liquid Waste that contains pollutants at concentrations which inhibit the sewerage treatment process – refer *Australian Sewage Quality Management Guidelines, June 2012, WSAA*; and any other substances listed in a relevant regulation

#In excess of the approved limit

Factors for consideration

Council's decision to accept liquid waste into its sewerage system will be based on the discharger satisfying Council's requirements. Therefore, when determining an application to discharge liquid waste to the sewerage system, Council will consider the following factors:

- The potential impacts of the proposed discharge on Council's ability to meet the objectives outlined in s. 1.2 of this document.
- The adequacy of the pre-treatment process(es) to treat the liquid trade waste to a level acceptable for discharge to the sewerage system, including proposed contingency measures in an event of the pre-treatment system failure
- The capability of the sewerage system (reticulation and treatment components) to accept the quantity and quality of the proposed liquid waste
- The adequacy of chemical storage and handling facilities, and the proposed safeguards for prevention of spills and leaks entering to the sewerage system
- The adequacy of the proposed due diligence program and contingency plan, where required.
- Proposed management of prohibited substances and other liquid waste not planned to be discharged to the sewerage system and safeguards to avoid any accidental discharge
- The potential for stormwater entering the sewerage system and adequacy of proposed stormwater controls
- The potential for growth of the community