Pythagoras' Theorem

The Pythagorean Theorem describes the relationship between the lengths of the sides of a right-angled triangle.

Pythagorean Theorem

$\mathbf{a}^{2}+b^{2}=c^{2}$

Finding the length of the hypotenuse
Given the lengths of two sides (a and b), you can find the length of the hypotenuse.

$b=6$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=8^{2}+6^{2} \\
& c^{2}=64+36 \\
& c^{2}=100 \\
& c=\sqrt{100} \\
& c=10
\end{aligned}
$$

Your answers may not be nice whole numbers

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=9^{2}+7^{2} \\
& c^{2}=81+49 \\
& c^{2}=130 \\
& c=\sqrt{130} \\
& c=11.40 \text { (2 d.p.) }
\end{aligned}
$$

Find the length of a side

Given the hypotenuse and one other side you can find the length of the third side.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \quad \text { rearranging gives } \\
c^{2}-a^{2} & =b^{2} \\
10^{2}-8^{2} & =b^{2} \\
100-64 & =b^{2} \\
36 & =b^{2} \\
b & =\sqrt{36} \\
b & =6
\end{aligned}
$$

Your answers may not be nice whole numbers

$b=4$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}-b^{2}=a^{2} \\
& 12.5^{2}-4^{2}=a^{2} \\
& 165.25-16=a^{2} \\
& 140.25=a^{2} \\
& a=\sqrt{140.25} \\
& a=11.84(2 \mathrm{~d} . \mathrm{p.})
\end{aligned}
$$

Now practice this using the available worksheets.

