MATHS AND STATS

Limits

Given a function $f(x)$, finding $\lim _{x \rightarrow a} f(x)$ involves investigating the value of the function f as the value of x approaches a.

Example

Given $f(x)=3 x+1$ find $\lim _{x \rightarrow 2} f(x)$.
From the table below you can see that as x gets closer and closer to 2 the value of $f(x)$ gets closer to 7. So $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} 3 x+1=7$

x	1.8	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$	6.4	6.7	6.97	6.997		7.003	7.03	7.3

Approaching from below
Approaching from above

When our function $f(x)$ is continuous then $\lim _{x \rightarrow a} f(x)=f(a)$ (i.e. we can simply evaluate the function f at $x=a$.) This method of finding the limit is called direct substitution.

Common challenges

Zero denominator

Sometimes direct substitution results in a denominator of zero.

Find $\lim _{x \rightarrow 5} f(x)$ when $f(x)=\frac{x^{2}-3 x-10}{x-5} \quad$ (try direct substitution)

$$
\lim _{x \rightarrow 5}=\frac{x^{2}-3 x-10}{x-5}=\frac{0}{0} \quad \text { which is undefined }
$$

Here $x-5$ is a factor of the numerator, so we can factorise the numerator and cancel the denominator giving

$$
\lim _{x \rightarrow 5}=\frac{x^{2}-3 x-10}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+2)}{(x-5)}=\lim _{x \rightarrow 5} x+2=7
$$

Note that even though $x=5$ is not in the domain of $f(x)$, the limit as x approaches 5 still exists.

Potential limits don't match

Sometimes the limit from the left does not agree with the limit from the right.
For the piecewise function

$$
f(x)=\left\{\begin{aligned}
2 & \text { if } x \geq 2 \\
-2 & \text { if } x<2
\end{aligned}\right.
$$

$$
\text { Find } \lim _{x \rightarrow 2} f(x)
$$

If you let x approach 2 from below then $f(x)$ is always -2. If you let x approach 2 from above then $f(x)$ is always 2 . As we get different values depending our direction of approach, we say there is no limit.
$\lim _{x \rightarrow 2} f(x)$ does not exist.

Unbounded growth

Sometimes the value of $f(x)$ grows without bound.

$$
\begin{aligned}
& f(x)=\frac{1}{x-2} \\
& \text { Find } \lim _{x \rightarrow 2} \frac{1}{x-2}
\end{aligned}
$$

As x approaches 2 from above $f(x)$ grows without limit. Also as x approaches 2 from below $f(x)$ grows without limit but in the negative direction.
Again we say the limit does not exist.
$\lim _{x \rightarrow 2} f(x)$ does not exist.

Oscillating values

Sometimes the limit does not settle down to a particular value

$$
f(x)=\sin \left(\frac{2}{x}\right) \quad \text { Consider } \lim _{x \rightarrow 0} \sin \left(\frac{2}{x}\right)
$$

You can see from the graph that $f(x)$ keeps oscillating between -1 and 1 and will not settle to a single value.
Again we say the limit does not exist.

Exercises

Find the limit for the following questions. If the limit is not defined then write No limit.

1. $\lim _{x \rightarrow 2} x^{2}-3 x$
2. $\lim _{x \rightarrow 3} \frac{x^{2}-3 x+6}{x-2}$
3. $\lim _{x \rightarrow 0} 3 x^{2}-7 x+4$
4. $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2}$

Answers

1. -2
2. 4
3. $\lim _{x \rightarrow 3} \frac{4}{x-3}$
4. 6
5. $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}$
6. No limit
7. -4
8. $\lim _{x \rightarrow 5} \frac{x^{2}-1}{x-5}$
9. No limit
10. $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$
11. $1 / 2$
12. 6
