

Given a function f(x), finding $\lim_{x\to a} f(x)$ involves investigating the value of the function f as the value of x approaches a.

Example

Given f(x) = 3x + 1 find $\lim_{x \to 2} f(x)$.

From the table below you can see that as x gets closer and closer to 2 the value of f(x) gets closer to 7. So $\lim_{x\to 2} f(x) = \lim_{x\to 2} 3x + 1 = 7$

x	1.8	1.9	1.99	1.999	2	2.001	2.01	2.1
<i>f(x)</i>	6.4	6.7	6.97	6.997		7.003	7.03	7.3

Approaching from below

Approaching from above

When our function f(x) is continuous then $\lim_{x\to a} f(x) = f(a)$ (i.e. we can simply evaluate the function f at x = a.) This method of finding the limit is called **direct substitution**.

Common challenges

Zero denominator

Sometimes direct substitution results in a denominator of zero.

Find
$$\lim_{x \to 5} f(x)$$
 when $f(x) = \frac{x^2 - 3x - 10}{x - 5}$ (try direct substitution)
$$\lim_{x \to 5} = \frac{x^2 - 3x - 10}{x - 5} = \frac{0}{0}$$
 which is undefined

Here x - 5 is a factor of the numerator, so we can factorise the numerator and cancel the denominator giving

$$\lim_{x \to 5} = \frac{x^2 - 3x - 10}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 2)}{(x - 5)} = \lim_{x \to 5} x + 2 = 7$$

Note that even though x = 5 is not in the domain of f(x), the limit as x approaches 5 still exists.

Potential limits don't match

Sometimes the limit from the left does not agree with the limit from the right.

For the piecewise function

$$f(x) = \begin{cases} 2 & \text{if } x \ge 2\\ -2 & \text{if } x < 2 \end{cases}$$

Find $\lim_{x \to 2} f(x)$

If you let x approach 2 from below then f(x) is always -2. If you let x approach 2 from above then f(x) is always 2. As we get different values depending our direction of approach, we say there is no limit. $\lim_{x\to 2} f(x)$ does not exist.

Unbounded growth

Sometimes the value of f(x) grows without bound.

$$f(x) = \frac{1}{x-2}$$

Find
$$\lim_{x \to 2} \frac{1}{x-2}$$

As x approaches 2 from above f(x) grows without limit. Also as x approaches 2 from below f(x) grows without limit but in the negative direction.

Again we say the limit does not exist.

$$\lim_{x \to 2} f(x) \text{ does not exist.}$$

Oscillating values

Sometimes the limit does not settle down to a particular value

$$f(x) = \sin\left(\frac{2}{x}\right)$$
 Consider $\lim_{x \to 0} \sin\left(\frac{2}{x}\right)$

You can see from the graph that f(x) keeps oscillating between -1 and 1 and will not settle to a single value.

Again we say the limit does not exist.

Exercises

Find the limit for the following questions. If the limit is not defined then write No limit.

1. $\lim_{x \to 2} x^2 - 3x$	8. $\lim_{x \to 3} \frac{x^2 - 3x + 6}{x - 2}$
2. $\lim_{x \to 0} 3x^2 - 7x + 4$	A 1993 499
3. $\lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$	Answers 12
$\frac{4}{4}$	2. 4
$x \to 3 \frac{1}{x-3} \frac{1}{x-3}$	3. 6
x^2-4	4. No limit
5. $\lim_{x \to -2} \frac{1}{x+2}$	54
x^2-1	6. No limit
6. $\lim_{x \to 5} \frac{1}{x-5}$	7. ½
7. $\lim_{x \to 1} \frac{x-1}{x^2-1}$	8. 6

