Further trigonometry

DEFINITIONS FROM COORDINATES

θ is measured anticlockwise (starting from " 3 on a clock"). From the SOH CAH TOA you learnt in school you already know that :

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

These definitions using coordinates can be used to extend the concept of trig ratios to angles that are bigger than 90°. We will use the second quadrant as an example.

Let $\varphi=180-\theta$
Note that φ is an acute angle so it can be shown in a right-angled triangle.

Using the coordinate definition
$\sin \theta=\frac{y}{r}$
Using the acute triangle
$\frac{y}{r}=\sin \varphi=\sin (180-\theta)$
So we have $\sin \theta=\sin (180-\theta)$
Similarly

$$
\begin{aligned}
& \cos \theta=\frac{x}{r}=-\cos (180-\theta) \\
& \tan \theta=\frac{y}{x}=-\tan (180-\theta)
\end{aligned}
$$

Extending these definitions to cover the whole circle will reveal that for all angles the trig ratios can be related to a "working" angle that can be drawn in a right-angled triangle. All working angles are measured back to thehorizontal line. In some quadrants the x-coordinate or y coordinate is negative so some trig ratios are negative.

This diagram is a good way to remember which ratios are positive in which quadrants. Where the trig ratio named is positive and all other ratios are negative in that quadrant. A common mnemonic is 'All Stations To Central'

Examples

*** note the acute angle is ALWAYS made with the horizontal

1) Find $\cos \left(120^{\circ}\right)$

$$
\begin{aligned}
\cos \left(120^{\circ}\right) & =-\cos \left(60^{\circ}\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

- Draw diagram to find "working" angle φ (working angle is measured back to the x-axis) $\theta=120$ so $\varphi=60$
- Decide if trig ratio is positive or negative.
- Calculate trig ratio of working angle (you may need your special triangles

2) Find $\tan \left(225^{\circ}\right)$

- In the third quadrant the working angle is measured back to the horzintal.
- $\theta=225$ so $\varphi=45$
- tan is positive in this quadrant

$$
\begin{aligned}
\tan (225) & =\tan (45) \\
& =1
\end{aligned}
$$

3) Find $\tan 320^{\circ}$

$$
\begin{aligned}
\tan (320) & =-\tan (40) \quad \text { Use your calculator to find this } \\
& =-0.8391(4 d . p .)
\end{aligned}
$$

Exercises

Find the following trigonometric ratios - note the acute angle is ALWAYS made with the horizontal

1. $\sin \left(45^{\circ}\right)$
2. $\sin \left(300^{\circ}\right)$
3. $\cos \left(210^{\circ}\right)$
4. $\tan \left(315^{\circ}\right)$
5. $\cos \left(115^{\circ}\right)$
6. $\tan \left(240^{\circ}\right)$

Answers

1. $\frac{1}{\sqrt{2}} \approx 0.707$
2. $=-\sin \left(60^{\circ}\right)=-\frac{\sqrt{3}}{2} \approx-0.866$
3. $=-\cos \left(30^{\circ}\right)=-\frac{\sqrt{3}}{2} \approx-0.866$
4. $=-\tan \left(45^{\circ}\right)=-1$
5. $=-\cos \left(65^{\circ}\right)=-0.423$
6. $=\tan \left(60^{\circ}\right)=1.732$
