Indices and Logarithms II

A \log is an index

Logarithms are another way of expressing powers. A logarithm is an index or power.

Can be expressed as

Note - Base (2), index (3) and number (8) are the same but in different positions.

$$
5^{2}=25 \quad \longleftrightarrow \quad \log _{5} 25=2
$$

When the bases are the same in index form, it can be easy to evaluate an index x.

$$
\begin{aligned}
2^{x} & =8 \\
2^{x} & =2^{3} \\
x & =3
\end{aligned} \quad \text {... same bases so the indices must be equal }
$$

But what about $2^{x}=10$?
We can guess x is about 3 point something as 2^{3} was 8
Using logs or putting this into log form gives $\log _{2} 10=x$.
This is asking 'What is the index on $2(x)$ that results in 10?'.

$$
\begin{aligned}
& \log _{2} 10=3.322 \quad \text { using a calculator, shown later } \\
& \text { (check } 2^{3.322}=10 \text { on your calulator) }
\end{aligned}
$$

Exercises

1. Rewrite $x^{y}=a$ in log form.
2. Rewrite $\log _{p} r=t$ in index form.
3. Rewrite $10^{y}=50$ in log form.
4. Rewrite $\log _{e} 694=t$ in index form.
5. Determine the following
a) $\log _{3} 9=$
b) $\log _{4} 16=$
c) $\log _{10} 1000=$
d) $\log _{6} 36=$
e) $\log _{2} 16=$
f) $\log _{3} 27=$
g) $\log _{5} 125=$
h) $\log _{2} 32=$
i) $\log _{10}\left(\frac{1}{1000}\right)=$
j) $\log _{3} \frac{1}{9}=$

Identities

For any $x, \quad \log _{x} x=1$
and

$$
\begin{aligned}
& \log _{x} 1=0 \\
& \left(\text { or } x^{0}=1\right)
\end{aligned}
$$

Logarithms on calculators

As you can see, a log can have many different bases.
Most scientific calculators only use two bases

- base 10 indicated by the log button
- and base e indicated by the In button
(The Euler number \boldsymbol{e} is a mathematical constant like π and is approximately 2.7182) WARNING
$\log \mathbf{1 2 . 6}$ can be confusing as the base is not given. It is usually base \boldsymbol{e} but it is worth checking if it is interpreted as $\log _{10} 12$ or $\log _{e} 12$

Exercises

6. Determine the following
a) $\quad \log _{10} 16=$
b) $\quad \log _{10} 81=$
c) $\quad \log _{10} 1000=$
d) $\quad \ln 16=$
e) $\quad \ln 1000=$
f) $\quad \ln 81=$

Change of base formula

When the index is a whole number, we can calculate the log result in our head or by calculator.

- $\log _{3} 9=2$ because we know $3^{2}=9$ as mentioned above
- But what do we do with $\log _{3} 10$ which does not have an exact answer and is not base 10 or base e ?

When the base is different to $\mathbf{1 0}$ or \boldsymbol{e}, we can easily change the base using:

$$
\log _{\text {old }} x=\frac{\log _{\text {new }} x}{\log _{\text {new }} \text { old }}
$$

Example

Using base 10 ...

Using base \boldsymbol{e}...

$\log _{3} 10=\frac{\log _{10} 10}{\log _{10} 3} \approx 2.096 \quad$ or $\quad \log _{3} 10=\frac{\log _{e} 10}{\log _{e} 3} \approx 2.096$
We can check by changing to index form $3^{2.096} \approx 10$ You can use either base!

Exercises

7. Change the base then use your calculator to evaluate each of the following
a) $\log _{3} 50$
b) $\log _{5} 10$
c) $\log _{7} 100$
d) $\log _{6} 1.362$

Solving equations

- If an equation has an unknown index, change the equation into log form and solve for the unknown.

Find x when $10^{x}=25 \longleftrightarrow \log _{10} 25=x$
Using the calculator $x \approx 1.398$

- If the equation is in log form, change it into index form can help to solve for the unknown.

Find x when $\quad \log _{10} x=1.9 \longleftrightarrow 10^{1.9}=x$
Using the calculator $x \approx 79.433$

Note - In both cases, changing the form moved all the numbers to one side of the equation leaving just the x on its own (making x the subject of the equation).

Exercises

8. Change from log to index form or vice-versa to find the value of
a) $\log _{10} x=0.5$
b) $\log _{10} x=1.2$
c) $\log _{10} x=1.8$
d) $10^{x}=28$
e) $10^{x}=45$
f) $10^{x}=136$
g) $e^{x}=212$
h) $e^{x}=96$
i) $e^{x}=13$
j) $\ln x=0.2$
k) $\ln x=1.8$
I) $\ln x=2.3$

Using logs

The following data shows the activity level, L , of a radioactive isotope after, t , seconds. Its graph is also shown.
Activity Level

$\mathrm{t}(\mathrm{sec})$	L (counts/min)
0	730
20	600
40	480
60	380
80	310
100	240
120	190
140	150
160	120

We can see that there is a relationship between the variables time and count as there is a pattern formed by the points. As time increases, count decreases.

It is useful to find equations of such relationships. Since the graph is not a straight line it is more difficult to find its equation and this relationship.

In situations like this, we can make it easier to find an equation of the relationship by changing the curve into a line. Look what happens when we take the base $\mathbf{1 0} \mathbf{l o g}$ of the count values and draw the graph.

Activity Level

$t(\mathrm{sec})$	$\log (\mathrm{L})$	L (counts/min)
0	$\log _{10} 730=2.8633228$	730
20	2.77815125	600
40	2.681241237	480
60	2.579783597	380
80	2.491361694	310
100	2.380211242	240
120	2.278753601	190
140	2.176091259	150
160	2.079181246	120

Activity Level

$\mathrm{t}(\mathrm{sec})$	$\log \mathrm{L}$ (counts/min)
0	2.86
20	2.78
40	2.68
60	2.58
80	2.49
100	2.38
120	2.28
140	2.18
160	2.08

Using logs can help to describe the relationship in a way that the equation is easy to determine.

The straight line equation is

$$
y=-0.005 x+2.8752 \quad \text { where } y=\log _{10} L
$$

In terms of our variables count and time, the equation of the line becomes

$$
\log _{10} L=-0.005 t+2.8752
$$

It is preferable to express the dependent (y or $\log _{10} L$) variable without the log. The equation is expressed in log form so we can change it into index form and see how that looks.

In log form ...

$$
\log _{10} L=-0.005 t+2.8752
$$

Identify the components ...
Base is 10
Index is $-0.005 t+2.8752$ (the whole right hand side)
Number is L

In index form ...

$$
10^{-0.005 t+2.8752}=L
$$

Normally at this point we would use index laws to write the equation as

$$
L=10^{2.8752} \times 10^{-0.005 t} \quad \text { or } \quad L=\frac{10^{2.8752}}{10^{0.005 t}}
$$

Answers

1. $\log _{\mathrm{x}} a=y$
2. $p^{t}=r$
3. $\log _{10} 50=y$
4. $e^{t}=694$
5.

a) $\log _{3} 9=2$
b) $\log _{4} 16=2$
c) $\log _{10} 1000=3$
d) $\log _{6} 36=2$
e) $\log _{2} 16=4$
f) $\log _{3} 27=3$
g) $\log _{5} 125=3$
h) $\log _{2} 32=5$
i) $\log _{10}\left(\frac{1}{1000}\right)=-3$
j) $\log _{3} \frac{1}{9}=-2$
6.
a) $\log _{10} 16=1.204$
b) $\log _{10} 81=1.908$
c) $\log _{10} 1000=3$
d) $\ln 16=2.773$
e) $\ln 1000=6.908$
f) $\ln 81=4.394$
7.
a) $\log _{3} 50=\frac{\log _{10} 50}{\log _{10} 3} \approx 3.56$
b) $\log _{5} 10=\frac{\log _{10} 10}{\log _{10} 5} \approx 1.43$
c) $\log _{7} 100=\frac{\log _{10} 100}{\log _{10} 7} \approx 2.37$
d) $\log _{6} 1.362=\frac{\log _{10} 1.362}{\log _{10} 6} \approx 0.17$
8.
a) $\log _{10} x=0.5 \rightarrow x=10^{0.5} \rightarrow x=3.16$
b) $\log _{10} x=1.2 \rightarrow x=10^{1.2} \rightarrow x=15.85$
c) $\log _{10} x=1.8 \rightarrow x=10^{1.8} \rightarrow x=63.10$
d) $10^{x}=28 \rightarrow x=\log _{10} 28 \rightarrow x=1.45$
e) $10^{x}=45 \rightarrow x=\log _{10} 45 \rightarrow x=1.65$
f) $10^{x}=136 \rightarrow x=\log _{10} 136 \rightarrow x=2.13$
g) $e^{x}=212 \rightarrow x=\log _{e} 212 \rightarrow x=5.36$
h) $e^{x}=96 \rightarrow x=\ln 96$ or $\log _{e} 96 \rightarrow x=4.56$
i) $e^{x}=13 \rightarrow x=\ln 13 \rightarrow x=2.56$
j) $\ln x=0.2 \rightarrow x=e^{0.2} \rightarrow x=1.22$
k) $\ln x=1.8 \rightarrow x=e^{1.8} \rightarrow x=6.05$

1) $\ln x=2.3 \rightarrow x=e^{2.3} \rightarrow x=9.97$
