Indices and Logarithms I

The parts of an exponential term are labelled below

Find

$4^{3}=$	$3^{4}=$
$5^{4}=$	$10^{5}=$
$2^{6}=$	$2^{4}=$

In algebra, with pronumerals (also called letters or variables) it works the same way so that the algebraic expression can be written in a compact form.

$$
\begin{gathered}
x \times x \times x=x^{3} \\
\text { or } \quad x \times x \times y \times x \times y=x^{3} y^{2}
\end{gathered}
$$

So the index is just a counter for the number of letters multiplied together.

Examples and the 6 index rules

1. Add indices when multiplying terms with the same base

$$
\begin{aligned}
x^{3} \times x^{4} & =(x \times x \times x) \times(x \times x \times x \times x) \\
& =x^{7} \text { or } x^{3+4}
\end{aligned}
$$

Note - the base doesn't change - the index is just a counter
2. Subtract indices when dividing terms with the same base

$$
\begin{aligned}
x^{6} \div x^{2} & =\frac{x^{6}}{x^{2}} \text { or } \frac{x \times x \times x \times x \times x \times x}{x \times x} \\
& =x^{4} \text { or } x^{6-2}
\end{aligned}
$$

Note - cross off (ie divide) each of the two bottom x 's into two x 's on the top line
3. When raising to a power, multiply the indices

$$
\begin{gathered}
\left(x^{2}\right)^{4} \text { or } x^{2} \times x^{2} \times x^{2} \times x^{2} \\
=x^{8} \text { or } x^{2 \times 4}
\end{gathered}
$$

Note - the base doesn't change - the index is just a counter
4. A term raised to the power zero is equal to one

$$
\begin{aligned}
& x^{0}=1 \\
& (3 x)^{0}=1 \\
& 4 x^{0}=4 \times 1=4 \quad \text { Do you see why? What term is raised to index } 0 \text { ? }
\end{aligned}
$$

The rules are a convenient shortcut but make sure you understand each process.
The last two rules introduce important alternative notations.
5. The denominator in the index means a root

$$
\begin{array}{ll}
\sqrt[5]{x}=x^{\frac{1}{5}} & 5=>\text { or } 5^{\text {th }} \text { root of } x \\
\sqrt[3]{8}=8^{\frac{1}{3}}=2 & 3=>\text { or cube root of } 8
\end{array}
$$

6. A term to a negative index means the term can change lines to form a positive index ie top \longleftrightarrow bottom or $\frac{\text { top }}{\text { bottom }}$

$$
7 x^{-5}=\frac{7}{x^{5}} \quad \text { only } x \text { is raised to the negative power }
$$

$$
\frac{a^{2} x^{-6}}{2 y^{-4}}=\frac{a^{2} y^{4}}{2 x^{6}} \quad \text { only } x \text { and } y \text { are raised to the negative power }
$$

$$
\begin{aligned}
(3 x)^{-2} & =\frac{1}{(3 x)^{2}} \quad \text { all } 3 x \text { is raised to the negative power } \\
& =\frac{1}{9 x^{2}}
\end{aligned}
$$

or $\quad \frac{5}{3 x^{-4}}=\frac{5 x^{4}}{3} \quad$ Focus on moving only the term(s) with a negative index

Summary

INDEX
the 3 parts of the index

Example

Simplify $8^{-\frac{2}{3}}$.

- Always start with the root - cube root 8 is 2
- That leaves only the square and the minus - the square of 2 or 2^{2} is 4
- Now we just have the minus - so change the 4 from the top to the bottom line and we get $\frac{1}{4}$

Warmup exercises

Common powers and roots- get familiar with these numbers so you can recognise when numbers have exact roots or not.

1. Squares and roots. Fill in the missing.

Squares - a number times itself ... and roots with the 2 notations (meaning the same thing)

$1^{2}=1 \times 1=1$	$\sqrt{1}=1$	$1^{\frac{1}{2}}=1$
$2^{2}=2 \times 2=4$	$\sqrt{4}=2$	$4^{\frac{1}{2}}=2$
$3^{2}=$	$\sqrt{9}=3$	$9^{\frac{1}{2}}=$
$4^{2}=4 \times 4=16$	$\sqrt{16}=4$	$16^{\frac{1}{2}}=4$
$5^{2}=5 \times 5=25$	$\sqrt{25}=5$	$25^{\frac{1}{2}}=5$
$6^{2}=6 \times 6=36$	$\sqrt{36}=$	$36^{\frac{1}{2}}=6$
$7^{2}=$	$\sqrt{49}=$	$49^{\frac{1}{2}}=$
$8^{2}=$	$\sqrt{64}=$	$64^{\frac{1}{2}}=$
$9^{2}=$	$\sqrt{81}=$	$81^{\frac{1}{2}}=$
$10^{2}=10 \times 10=100$	$\sqrt{100}=10$	$100^{\frac{1}{2}}=$
$11^{2}=$	$\sqrt{121}=11$	$121^{\frac{1}{2}}=$
$12^{2}=$	$\sqrt{144}=$	$144^{\frac{1}{2}}=12$
$13^{2}=$	$\sqrt{169}=$	$169^{\frac{1}{2}}=$
$14^{2}=$	$\sqrt{196}=$	$196^{\frac{1}{2}}=$
$15^{2}=$	$\sqrt{225}=$	$225^{\frac{1}{2}}=15$

2. Cubes and cube roots. Fill in the missing.

$1^{3}=1 \times 1 \times 1=1$	$\sqrt[3]{1}=1$	$1^{\frac{1}{3}}=1$
$2^{3}=2 \times 2 \times 2=8$	$\sqrt[3]{8}=2$	$8^{\frac{1}{3}}=$
$3^{3}=3 \times 3 \times 3=$	$\sqrt[3]{27}=$	$27^{\frac{1}{3}}=3$
$4^{3}=4 \times 4 \times 4=$	$\sqrt[3]{64}=4$	$64^{\frac{1}{3}}=$
$5^{3}=5 \times 5 \times 5=125$	$\sqrt[3]{125}=$	$125^{\frac{1}{3}}=5$

3. Various powers and roots of 2 and 3 . Fill in the missing.

$2^{1}=2$	$\sqrt{4}=2$	$4^{\frac{1}{2}}=2$
$2^{2}=4$	$\sqrt[3]{8}=2$	$8^{\frac{1}{3}}=$
$2^{3}=$	$\sqrt[4]{16}=2$	$16^{\frac{1}{4}}=2$
$2^{4}=16$	$\sqrt[5]{32}=$	$32^{\frac{1}{5}}=$
$2^{5}=$	$\sqrt[6]{64}=2$	$64^{\frac{1}{6}}=2$
$2^{6}=64$	$\sqrt[7]{128}=$	$128^{\frac{1}{7}}=$
$2^{7}=$	$\sqrt[8]{256}=2$	$256^{\frac{1}{8}}=2$
$2^{8}=$	$\sqrt[9]{512}=$	$512^{\frac{1}{9}}=$
$2^{9}=$	$\sqrt[10]{1024}=2$	$1024^{\frac{1}{10}}=2$
$2^{10}=$		

$3^{1}=3$	$\sqrt{3}=\sqrt{3}$	$3^{\frac{1}{2}}=\sqrt{3}$
$3^{2}=9$	$\sqrt{9}=3$	$9^{\frac{1}{2}}=3$
$3^{3}=27$	$\sqrt[3]{27}=3$	$27^{\frac{1}{3}}=$
$3^{4}=81$	$\sqrt[4]{81}=$	$81^{\frac{1}{4}}=3$
$3^{5}=243$	$\sqrt[5]{243}=3$	$243^{\frac{1}{5}}=$

Exercises

4. Simply each of the following
a) $100^{\frac{1}{2}}=$
b) $125^{\frac{1}{3}}=$
c) $2^{-3}=$
d) $27^{\frac{2}{3}}=$
e) $5^{-1}=$
f) $16^{-\frac{3}{4}}=$
g) $8^{\frac{4}{3}}=$
h) $5^{-2}=$
i) $64^{\frac{5}{6}}=$
j) $\frac{1}{6^{-2}}=$
5. Simplify the following in index form
a) $2^{3} \times 2^{5}=$
b) $x^{4} \times x^{3}=$
c) $x^{6} \div x^{4}=$
d) $\left(x^{4}\right)^{5}=$
e) $a^{6} \div a^{3}=$
f) $\left(x^{3}\right)^{\frac{3}{2}}=$
g) $a^{-3} \times a^{7}=$
h) $y^{-2} \times x^{4} \times y^{-3} \times x^{-5}=$
6. Simplify the following
a) $\sqrt{64 x^{8}}$
b) $\sqrt{81 x^{18}}$
c) $\left(8 x^{12}\right)^{\frac{1}{3}}$
d) $\sqrt{49 a^{16}}$
e) $\sqrt[3]{125 y^{12}}$
f) $\left(16 x^{24}\right)^{\frac{1}{4}}$

Answers

4.

a) $100^{\frac{1}{2}}=10$
b) $125^{\frac{1}{3}}=5$
c) $2^{-3}=\frac{1}{8}$
d) $27^{\frac{2}{3}}=9$
e) $5^{-1}=\frac{1}{5}$
f) $16^{-\frac{3}{4}}=\frac{1}{8}$
g) $8^{\frac{4}{3}}=16$
h) $5^{-2}=\frac{1}{25}$
i) $64^{\frac{5}{6}}=32$
j) $\frac{1}{6^{-2}}=36$
5.
a) $2^{3} \times 2^{5}=2^{8}$
b) $x^{4} \times x^{3}=x^{7}$
c) $x^{6} \div x^{4}=x^{2}$
d) $\left(x^{4}\right)^{5}=x^{20}$
e) $a^{6} \div a^{3}=a^{3}$
f) $\left(x^{3}\right)^{\frac{3}{2}}=x^{9 / 2}$ or $x^{4^{1 / 2}}$
g) $a^{-3} \times a^{7}=a^{4}$
h) $y^{-2} \times x^{4} \times y^{-3} \times x^{-5}=x^{-1} y^{-5}$
6.
a) $8 x^{4}$
b) $9 x^{9}$
c) $2 x^{4}$
d) $7 a^{8}$
e) $5 y^{4}$
f) $2 x^{6}$

