MATHS AND STATS

Indices and Logarithms I

The parts of an exponential term are labelled below

Find

$5^4 = 10$	${}^{+} =$ ${}^{5} =$ ${}^{+} =$
------------	--

In algebra, with pronumerals (also called letters or variables) it works the same way so that the algebraic expression can be written in a compact form.

$$x \times x \times x = x^{3}$$
$$x \times x \times y \times x \times y = x^{3}y^{2}$$

So the index is just a counter for the number of letters multiplied together.

Examples and the 6 index rules

or

x

1. Add indices when multiplying terms with the same base

$${}^{3} \times x^{4} = (x \times x \times x) \times (x \times x \times x \times x)$$
$$= x^{7} or x^{3+4}$$

Note - the base doesn't change - the index is just a counter

2. Subtract indices when dividing terms with the same base

$$x^{6} \div x^{2} = \frac{x^{6}}{x^{2}} \text{ or } \frac{x \times x \times x \times x \times x \times x}{x \times x}$$
$$= x^{4} \text{ or } x^{6-2}$$

Note – cross off (ie divide) each of the two bottom x's into two x's on the top line

3. When raising to a power, multiply the indices

$$(x2)4 or x2 × x2 × x2 × x2= x8 or x2×4$$

Note - the base doesn't change - the index is just a counter

4. A term raised to the power zero is equal to one

$$x^{0} = 1$$

 $(3x)^{0} = 1$
 $4x^{0} = 4 \times 1 = 4$ Do you see why? What term is raised to index 0?

The rules are a convenient shortcut but make sure you understand each process.

The last two rules introduce important alternative notations.

5. The denominator in the index means a root

$$\sqrt[5]{x} = x^{\frac{1}{5}}$$
 5 => or 5th root of X
 $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$ 3 => or cube root of 8

6. A term to a negative index means the term can change lines to form a positive index

ie top
$$\longleftrightarrow$$
 bottom or $\frac{top}{bottom}$
 $7x^{-5} = \frac{7}{x^5}$ only *X* is raised to the negative power
 $\frac{a^2x^{-6}}{2y^{-4}} = \frac{a^2y^4}{2x^6}$ only *X* and *Y* are raised to the negative power
 $(3x)^{-2} = \frac{1}{(3x)^2}$ all *3X* is raised to the negative power
 $= \frac{1}{9x^2}$ or $\frac{5}{3x^{-4}} = \frac{5x^4}{3}$ Focus on moving only the term(s) with a negative index

Example

Simplify $8^{-\frac{2}{3}}$.

- Always start with the root cube root 8 is 2
- That leaves only the square and the minus the square of 2 or 2² is 4
- Now we just have the minus so change the 4 from the top to the bottom line and we get $\frac{1}{4}$

Warmup exercises

Common powers and roots– get familiar with these numbers so you can recognise when numbers have exact roots or not.

1. Squares and roots. Fill in the missing.

Squares – a number times itself ... and roots with the 2 notations (meaning the same thing)

-		· •
$1^2 = 1 \times 1 = 1$	$\sqrt{1} = 1$	$1^{\frac{1}{2}} = 1$
$2^2 = 2 \times 2 = 4$	$\sqrt{4} = 2$	$4^{\frac{1}{2}} = 2$
3 ² =	$\sqrt{9} = 3$	$9^{\frac{1}{2}} =$
$4^2 = 4 \times 4 = 16$	$\sqrt{16}$ = 4	$16^{\frac{1}{2}} = 4$
5 ² = 5 x 5 = 25	$\sqrt{25} = 5$	$25^{\frac{1}{2}} = 5$
$6^2 = 6 \times 6 = 36$	$\sqrt{36}$ =	$36^{\frac{1}{2}} = 6$
7 ² =	$\sqrt{49}$ =	$49^{\frac{1}{2}} =$
8 ² =	$\sqrt{64}$ =	$64^{\frac{1}{2}} =$
9 ² =	$\sqrt{81}$ =	$81^{\frac{1}{2}} =$
10 ² = 10 x 10 =100	$\sqrt{100} = 10$	$100^{\frac{1}{2}} =$
11 ² =	$\sqrt{121} = 11$	$121^{\frac{1}{2}} =$
12 ² =	$\sqrt{144}$ =	$144^{\frac{1}{2}} = 12$
13 ² =	$\sqrt{169} =$	$169^{\frac{1}{2}} =$
14 ² =	$\sqrt{196}$ =	$196^{\frac{1}{2}} =$
15 ² =	√ <u>225</u> =	$225^{\frac{1}{2}} = 15$

2. Cubes and cube roots. Fill in the missing.

$1^3 = 1 \times 1 \times 1 = 1$	³ √1= 1	$1^{\frac{1}{3}} = 1$
$2^3 = 2 \times 2 \times 2 = 8$	$\sqrt[3]{8}=2$	$8^{\frac{1}{3}} =$
3 ³ = 3 x 3 x 3 =	³ √27=	$27^{\frac{1}{3}} = 3$
$4^3 = 4 \times 4 \times 4 =$	$\sqrt[3]{64} = 4$	$64^{\frac{1}{3}} =$
5 ³ = 5 x 5 x 5 = 125	³ √125=	$125^{\frac{1}{3}} = 5$

3. Various powers and roots of 2 and 3. Fill in the missing.

$2^1 = 2$	_	
$2^2 = 4$	$\sqrt{4} = 2$	$4^{\frac{1}{2}} = 2$
2 ³ =	<u>³√8</u> = 2	$8^{\frac{1}{3}} =$
2 ⁴ = 16	⁴ √ <u>16</u> = 2	$16^{\frac{1}{4}} = 2$
2 ⁵ =	5√32=	$32^{\frac{1}{5}} =$
2 ⁶ = 64	°√ <u>64</u> = 2	$64^{\frac{1}{6}} = 2$
2 ⁷ =	⁷ √128=	$128^{\frac{1}{7}} =$
2 ⁸ =	°√ <u>256</u> = 2	$256^{\frac{1}{8}} = 2$
2 ⁹ =	°√ <u>512</u> =	$512^{\frac{1}{9}} =$
2 ¹⁰ =	$\sqrt[10]{1024} = 2$	$1024^{\frac{1}{10}} = 2$

© 2021 The University of Newcastle newcastle.edu.au/academic-learning-support

CRICOS Provider 00109J

3 ¹ = 3	$\sqrt{3} = \sqrt{3}$	$3^{\frac{1}{2}} = \sqrt{3}$
3 ² = 9	$\sqrt{9} = 3$	$9^{\frac{1}{2}} = 3$
3 ³ = 27	$\sqrt[3]{27}=3$	$27^{\frac{1}{3}} =$
3 ⁴ = 81	⁴ √81=	$81^{\frac{1}{4}} = 3$
3 ⁵ = 243	$\sqrt[5]{243}=3$	$243^{\frac{1}{5}} =$

Exercises

- 4. Simply each of the following
 - a) $100^{\frac{1}{2}} =$ f) $16^{-\frac{3}{4}} =$ b) $125^{\frac{1}{3}} =$ g) $8^{\frac{4}{3}} =$
 - c) $2^{-3} =$ d) $27^{\frac{2}{3}} =$ i) $64^{\frac{5}{6}} =$
 - e) $5^{-1} = j$ $\frac{1}{6^{-2}} = j$

5. Simplify the following in index form a) $2^3 \times 2^5 =$

- b) $x^4 \times x^3 =$
- c) $x^6 \div x^4 =$
- d) $(x^4)^5 =$

6. Simplify the following

- a) $\sqrt{64x^8}$
- b) $\sqrt{81x^{18}}$
- c) $(8x^{12})^{\frac{1}{3}}$

- e) $a^{6} \div a^{3} =$ f) $(x^{3})^{\frac{3}{2}} =$ g) $a^{-3} \times a^{7} =$ h) $y^{-2} \times x^{4} \times y^{-3} \times x^{-5} =$
- d) $\sqrt{49a^{16}}$
- e) $\sqrt[3]{125y^{12}}$
- f) $(16x^{24})^{\frac{1}{4}}$

Answers

4.

÷

a)
$$100^{\frac{1}{2}} = 10$$

b) $125^{\frac{1}{3}} = 5$
c) $2^{-3} = \frac{1}{8}$
d) $27^{\frac{2}{3}} = 9$
f) $16^{-\frac{3}{4}} = \frac{1}{8}$
g) $8^{\frac{4}{3}} = 16$
h) $5^{-2} = \frac{1}{25}$
i) $64^{\frac{5}{6}} = 32$

e)
$$5^{-1} = \frac{1}{5}$$

a) $2^3 \times 2^5 = 2^8$ b) $x^4 \times x^3 = x^7$ c) $x^6 \div x^4 = x^2$ d) $(x^4)^5 = x^{20}$

)
$$16^{-\frac{1}{4}} = \frac{1}{8}$$

(3) $8^{\frac{4}{3}} = 16$
(4) $5^{-2} = \frac{1}{25}$
(5) $64^{\frac{5}{6}} = 32$
(7) $1^{-\frac{1}{25}} = 10^{-\frac{1}{25}}$

j)
$$\frac{1}{6^{-2}} = 36$$

5.

e)
$$a^{6} \div a^{3} = a^{3}$$

f) $(x^{3})^{\frac{3}{2}} = x^{9/2} \text{ or } x^{4^{1/2}}$
g) $a^{-3} \times a^{7} = a^{4}$

h)
$$y^{-2} \times x^4 \times y^{-3} \times x^{-5} = x^{-1}y^{-5}$$

6.

a)
$$8x^4$$

- b) $9x^9$
- c) $2x^4$

f) $2x^6$

