Rates and ratios

A ratio is the comparison of quantities expressed in the same units.
A rate is the comparison of quantities that may be expressed in different units (hence you must always specify the units with a rate).
E.g. You can mix concrete with the ratio of cement : sand : gravel as 1:2:3

A car travels at the rate of $60 \mathrm{~km} / \mathrm{hr}$ (ie $60 \mathrm{~km}: 1 \mathrm{hr}$)

Warning: If we say the ratio of cordial to water is $1: 10$. This does not mean that $\frac{1}{10}$ of the mixture is cordial. Only one part out of a total of 11 parts of the mixture is cordial, hence $\frac{1}{11}$ of the mixture is cordial.

Equivalent ratios

Multiplying or dividing both sides of a given ratio will not change the value of the ratio. So the ratios 15:12 and 5:4 are equivalent. 15:12 = 5:4

Ratios should always be expressed by using the smallest whole numbers possible.

To simplify 120:12 divide both quantities by 12 giving 10:1.
To simplify $1 ½: 2$ multiply both quantities by 2 giving 3:4.

Example

Divide the lotto winnings of $\$ 5000$ into the ratio of $2: 3$
$2+3=5$
$\$ 5000 \div 5=\$ 1000$
$2 \times \$ 1000: 3 \times \$ 1000$
\$2000:\$3000
12000.个U00

Add the two parts
Divide the total amount by your answer
Multiply both sides by your answer

Example

Scales on maps are an example of ratios.
On a map drawn with a scale of 1:25000 a line 3 cm long would represent a line that is $3 \times$ $25000 \mathrm{~cm}=75000 \mathrm{~cm}(=750 \mathrm{~m})$ in real life.
A fence that is 500 m would be drawn on the map as a line that is

$$
500 \div 25000=0.02 \mathrm{~m}(=2 \mathrm{~cm}) \text { long. }
$$

Rates

A car travels at $50 \mathrm{~km} / \mathrm{hr}$. How long will it take to go 350 km ?
$350 \div 50=7$ hours Divide the total distance by speed
An ant runs at $0.015 \mathrm{~m} /$ second how long does it take to run 3 metres?
Hint: Divide the total distance by speed
$3 \div 0.015=200$ seconds ($=3 \mathrm{mins}$ and 20 sec)

Equivalent rates

Rates can be expressed in different units

Example

A car travels at $72 \mathrm{~km} / \mathrm{h}$ what is the speed in metres per second?
72km :1hr
$72 \times 1000 \mathrm{~m}: 1 \times 60 \times 60$ seconds
Change units
$72000 \mathrm{~m}: 3600$ seconds
20m:1 second
Divide both parts by the number of seconds

Exercises

1. Simplify these ratios
(a) 3:27
(b) 0.5:0.25
(c) $24: 36$
(d) 64:16
(e) $1 \frac{3}{4}: \frac{3}{8}$
2. Divide $\$ 700$ in the ratio of $4: 3$
3. Divide 540 kg in the ratio of $5: 4$
4. A map is drawn with a scale of $1: 25000$. A road is 5 km long, how long is it on the map?
5. A model of a new passenger plane is claimed to be made using a scale of $1: 100$. The model has a wingspan of 23 cm . Do you think the claim could be accurate? What would be the wingspan of the real plane?
6. You are mixing cement sand and gravel in the ratio 1:2:3 to make concrete.
(a) You have 3 shovels of cement, how much sand and gravel do you need?
(b) You have 8 shovels of sand, how much cement and gravel do you need?
(c) You have 15 shovels of gravel, how much sand and cement do you need?
7. Convert $120 \mathrm{~km} / \mathrm{hr}$ into a speed in m / s.
8. Convert $2 \mathrm{~m} /$ second to a speed in $\mathrm{km} / \mathrm{hr}$.

Answers

1. (a) $1: 9$
(b) $2: 1$
(c) $2: 3$
(d) $4: 1$
(e) $14: 3$
2. $\$ 400: \$ 300$
3. $300 \mathrm{~kg}: 240 \mathrm{~kg}$
4. 20 cm
5. The wingspan of the real plane would be 2.3 m . This is not big enough for a passenger plane, so the claim is not accurate.
6. (a) 6 shovels of sand and 9 shovels of Gravel
(b) 4 shovels of cement and 12 shovels of Gravel
(c) 5 shovels of cement and 15 shovels of Gravel
7. $33.3 \mathrm{~m} / \mathrm{s}$
8. $7.2 \mathrm{~km} / \mathrm{hr}$
