Choosing a study design to answer a specific research question

Clinical Research Design IT Statistical Services

Importance of study design
- Will determine how you collect, analyse and interpret your data
- Helps you decide what resources you need
- Impact on the reliability of your study results

Types of study design

Descriptive:
- Provides an overview of what is happening within a particular population or group
- Includes: cross-sectional and qualitative

Types of study design

Analytical:
- Quantify the relationship between two factors.
 1. Experimental designs:
 - Randomised controlled trials
 - Non-randomised trials
 2. Observational designs:
 - Cohort
 - Case-control
 - Cross-sectional
How to decide on a research design

• What is your research question?
• PICO
 • Patient or Problem or Population
 • Intervention
 • Comparison
 • Outcome

Reference:
BMJ 2010;340:c869 doi: 10.1136/bmj.c869
Intervention delivered
Observational
NO
Comparison
Descriptive
Yes
Analytic
Cross-sectional
Case-control
Cohort

How to decide on a research design

- What is your research question?
- What design is the most rigorous?

Levels of evidence

- Meta-analysis
- Systematic review
- Randomised controlled trials
- Cohort studies
- Case control studies
- Cross-sectional studies
- Case series/case reports

Reference:
BMJ 2010;340:c869 doi: 10.1136/bmj.c869
How to decide on a research design

• What is your research question?
• What design will give you the greatest level of evidence?
• What is ethically appropriate?

Pilot studies

• Small scale preliminary study of your larger trial
• Helps to establish:
 • Feasibility
 • Procedures and materials
 • Cost
 • Barriers and enablers
Pilot studies
• Small scale preliminary study of your larger trial
• Helps to establish:
 • Feasibility
 • Procedures and materials
 • Cost
 • Barriers and enablers

Pilot studies ARE NOT
• An evaluation of effectiveness
• An assessment of the main hypotheses
• An indication of effect size

How will you reduce bias?
• Strategies to reduce error within your data.
• How to avoid confounding.
• Reduce threats to the validity of your study.

Gold standard RCT
• Control group
 • Assess direct effects of intervention
• Random allocation of participants
 • Ensures comparability of groups
 • Protects against selection bias

Well performed RCTs
• Well-defined inclusion and exclusion criteria
 • Homogenous to ensure comparability
 • Representative of the population
• Concealment of treatment allocation
 • Allocation should occur after baseline
• Blinding
 • Double-blind
 • Single-blind
• Intention to treat (ITT analysis)
Limits of RCTs

- Not always possible
- Can be expensive
- Reduced external validity (limitation believed by some)
- Ethically inappropriate

When you can’t randomise individuals

- Cluster randomised Controlled trials (CRCTs)
 - Randomise ‘clusters’ of individuals
- Advantages
 - Reduces contamination
- Design considerations
 - Unit of analyses
 - Number of clusters
 - Clustering effects
 - Sample size and analysis is more complex

When you can’t randomise individuals

- Stepped wedge design
 - ‘Clusters’ begin in the control and are randomly allocated to cross-over to the intervention at pre-determined sequences
- Advantages
 - Pragmatic
 - Provides a rigorous design where otherwise not possible
 - Efficient
- Design considerations
 - Clustering effect
 - Temporal effects
 - Number of clusters
 - Number and length of steps
 - Collect data at each time-point
 - Sample size and analysis more complex

What to put in your research grant

- Justify your design
- Justify why alternate designs were not chosen
- Identify the strengths but also the weaknesses of your design
- Offer solutions/strategies to address the weaknesses
- Demonstrate that the design is feasible
- Offer alternatives if things do not go as planned

Useful guidelines/documents

- CONSORT Statements and checklists
- STROBE
- Cochrane – risk of bias
- RE-AIM Framework
Things to remember

- Select a design that allows you to answer your research question
- Select a design that provides the highest level of evidence possible – but is also feasible
- Conduct a pilot
- Pay attention to the finer details

Useful references