

Graphing sine functions

The most basic sine function is f(x) = sin(x). Its graph is given below and continues on in the same way to the left and the right.

Vertical modifications

A general sine function has the form $f(x) = A\sin(Bx + C) + D$.

- Here |*A*| is the amplitude,
- Bx + C is called the argument of sine and
- *D* is the vertical shift.

The value of D gives the midline of the graph y = D (the line the graph oscillates about). An increase in |A| stretches the graph of sine vertically, whereas a decrease in |A| compresses the graph vertically.

Example

Graph $f(x) = 2 \sin x - 1$.

- The amplitude is 2 so we stretch a standard sine graph vertically by a factor of 2.
- The midline is y = -1 so the shift the graph down one place.

Horizontal modifications

The argument of sine is responsible for the horizontal modifications to the graph. Using our general sine function $f(x) = A\sin(Bx + C) + D$, the value of *B* affects the period of the graph and *C* affects the horizontal shift of the graph (known as phase shift).

- The period is given by $\frac{2\pi}{B}$.
- The horizontal shift is given by $-\frac{c}{B}$

Notice that an increase in B results in a decrease in both the period and the shift. Also notice the negative sign means you might be shifting in the opposite direction to what you might expect.

Example

Graph $f(x) = \sin(2t + \pi)$.

The period is $\frac{2\pi}{2} = \pi$ so the graph repeats every π . The horizontal shift is $-\frac{\pi}{2}$ so every point on the graph will be moved $\frac{\pi}{2}$ to the left. The amplitude is 1 and the midline is y = 0.

Example

Graph $3\sin\left(\frac{\pi x}{2} - \frac{\pi}{2}\right) + 1$

- There is a midline of y = 1, and an amplitude of 3, so the graph will have a maximum of 1 + 3 = 4 and a minimum of 1 3 = -2.
- The period is $2\pi \div \frac{\pi}{2} = 2\pi \times \frac{2}{\pi} = 4$.
- The horizontal shift is $-\left(-\frac{\pi}{2}\right) \div \frac{\pi}{2} = 1.$

