Using Trigonometry

Calculating unknown sides

In right-angled triangles:

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

The common mnemonic for the above three equations is SOH CAH TOA.

Method

1. Choose which formula to use (\sin , \cos or \tan).
2. Substitute in the values you have.
3. Solve using algebra skills.

Example 1

Find the value of x

1. We want the side opposite 40° and have the hypotenuse so we use $\sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
2. Substitute in the values

$$
\sin \left(40^{\circ}\right)=\frac{o p p}{8}
$$

3. Solve

$$
8 \times \sin \left(40^{\circ}\right)=o p p
$$

Now use your calculator

$$
5.1423=\text { opp }
$$

Answer is
$x=5.1 \mathrm{~cm}$ (to nearest tenth of cm)

Example 2

We want the side adjacent to the angle 36° and we have the hypotenuse so we use

$$
\begin{aligned}
& \cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \text { (substitute in the values) } \\
& \cos \left(36^{\circ}\right)=\frac{\text { adj }}{23} \quad(\times 23, \text { both sides) } \\
& 23 \times \cos \left(36^{\circ}\right)=\text { adj } \\
& 18.61(2 \text { d. p. })=\text { adj } \quad \text { (swap sides) } \\
& \text { adj }=18.61 \text { (2 d.p. })
\end{aligned}
$$

$$
\text { Answer is } x=18.61 \mathrm{~cm}
$$

$$
\begin{aligned}
& \tan \theta=\frac{\text { opp }}{\text { adj }} \\
& \tan 42^{\circ}=\frac{\text { adj }}{27} \\
& 27 \times \tan 42^{\circ}=\text { adj } \\
& 24.31(2 \mathrm{~d} . \text { p. })=\text { adj } \\
& \text { adj }=24.31(2 \mathrm{~d} . \mathrm{p} .) \\
& \quad x=24.31 \mathrm{~cm}(2 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

Example 4

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{\text { hyp } \quad \text { (substitute in values) }} \\
& \sin 23^{\circ}=\frac{18}{\text { hyp }} \quad \text { (} x \text { hyp, both sides) } \\
& \text { hyp } \times \sin 23^{\circ}=18 \quad \text { (divide by } \sin 23 \text {, both sides) } \\
& \frac{\operatorname{hyp} \times \sin 23^{\circ}}{\sin 23^{\circ}}=\frac{18}{\sin 23^{\circ}} \\
& \text { hyp }=\frac{18}{\sin 23^{\circ}} \\
& \text { hyp }=46.07 \text { (2d.p.) } \\
& \text { Answer } x=46.07 \mathrm{~cm} \text { (2d.p.) }
\end{aligned}
$$

