Solving quadratic equations

Quadratic equations are generally written in the form

$$
a x^{2}+b x+c=0
$$

where a, b and c are real numbers.
There are 3 common methods to solve such equations:

Method 1: factorisation

Type 1: When $a=1$, our equation is of the form $x^{2}+\underline{\boldsymbol{b}} \boldsymbol{x}+\underline{\boldsymbol{c}}=\mathbf{0}$
Use the expansion to factorise the equation

$$
\left.(x+p)(x+q)=x^{2}+x \underline{(p+q}\right)+\underline{p q}
$$

So we look for two numbers p and q, which add to give b and multiply to give c.
It is easiest to find the factors of c first (ie two numbers multiplying to give c)

Example

For $x^{2}+\underline{3 x}+\underline{2}=0$, we want two numbers to multiply to 2 and add to 3 .
The only factors of 2 are 2 and 1 , and they add to give 3 . Therefore,

$$
x^{2}+3 x+2=(x+1)(x+2)=0
$$

Now we use the fact that if two numbers multiply to give 0 , one of them must be 0 .

$$
\text { So either } \begin{array}{rlrlrl}
(x+1) & =0 & \text { or } & & (x+2) & =0 \\
x & =-1 & \text { or } & x & =-2 .
\end{array}
$$

If c is negative, then the two numbers we are looking for will have different signs. This means b will be the difference between them.

Example

For $x^{2}-x-6$, we find that 2 and 3 multiply to give 6 and differ by 1 . The signs must be different to multiply to get -6 , so our choices are -2 and 3 , or -3 and 2 .
The latter pair add to -1 , ie the larger factor takes the sign of the x-term or b

$$
x^{2}-x-6=(x-3)(x+2)=0
$$

So

$$
x=3 \text { or } x=-2 .
$$

Type 2: If a does not equal 1 , then our equation is of the form $a x^{2}+b x+c=0$ We need to do things a little differently. First we look for numbers which add to b, and multiply to give ac.

Example

Solve $2 x^{2}-x-6=0$.
We need two numbers which multiply to -12 and so one number must be positive and the other negative. We choose our numbers from the following: (1 and 12), (2 and 6), or (3 and 4). They must also add to give -1 .
3 and 4 differ by 1 , so we use -4 and 3 because $-4+3=-1$
Replace the middle term of the equation $-x$ with the equivalent expression $-4 x+3 x$ (note -4 and 3 are the numbers we just found above).

$$
\begin{aligned}
& 2 x^{2}-4 x+3 x-6=0 \\
& 2 x(x-2)+3(x-2)=0 \\
& (2 x+3)(x-2)=0 \\
& 2 x+3=0 \quad \text { or } \quad x-2=0 \\
& x=-\frac{3}{2} \quad \text { or } \quad x=2
\end{aligned}
$$

Now factorise in pairs:

Method 2: completing the square

We manipulate the quadratic equation so one side of it can be written as a square, i.e. $(x+p)^{2}$. We make use of the expansion $(x+p)^{2}=x^{2}+\underline{2 p x}+p^{2}$ Since we have $a x^{2}+\underline{b x}+c=0$ we want a p such that $2 p=b$. We also need to deal with the constant terms so we subtract c from both sides and add p^{2} to both sides. Then we can factorise one side of the equation into a square. From here we can solve the equation for x simply by undoing the operations acting on x.

$$
\begin{array}{rlrl}
\text { Example } & \text { Solve } x^{2}+6 x-7=0 & & \\
\qquad \begin{aligned}
x^{2}+6 x-7 & =0 & & \\
x^{2}+6 x & =7 & & \text { Put the constant on the other side } \\
x^{2}+6 x+3^{2} & =7+3^{2} & & \text { Halve } b \text { ie } \frac{6}{2} \text { and add }\left(\frac{6}{2}\right)^{2} \text { to both sides } \\
(x+3)^{2} & =16 & & \text { Factorise the LHS into a perfect square } \\
x+3 & = \pm \sqrt{16} & & \text { Squareroot both sides } \\
x+3 & =4 \text { or }-4 & & \\
x & =1 \text { or }-7 & &
\end{aligned} \ggg \gg l
\end{array}
$$

Both of these methods are fairly easy for "nice" solutions, but when your a, b, and c are not whole numbers, or your solutions are surds, they are not so easy to do. (Completing the square is also used when graphing circles and ellipses.)

Harder example

$x^{2}+5 x-8=0$
$x^{2}+5 x=8$
$x^{2}+5 x+\left(\frac{5}{2}\right)^{2}=8+\left(\frac{5}{2}\right)^{2}$
$\left(x+\frac{5}{2}\right)^{2}=\frac{57}{4}$
Ws a
square
$x+\frac{5}{2}= \pm \sqrt{\frac{57}{4}}$
and add $\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$
on both sides

$x=-\frac{5}{2} \pm \frac{\sqrt{57}}{\sqrt{4}}$
$x=-\frac{5}{2} \pm \frac{\sqrt{57}}{2}$

Method 3: the quadratic formula

Given

$$
a x^{2}+b x+c=0
$$

We use the formula for x :

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This finds all solutions that exist for any quadratic, so is often the preferred method, even though it involves some computation. It gets easier with practise!

Example Solve $4.2 x+2 x-5.1=0$

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{2^{2}-4(4.2)(-5.1)}}{2(4.2)} \\
& =\frac{-2 \pm \sqrt{89.68}}{8.4} \\
x & \approx-0.238 \pm 1.127 \\
x & \approx 0.889 \text { or } x=-1.365
\end{aligned}
$$

Solving $a x^{2}+b x+c=0$ can be like asking where the graph $y=a x^{2}+b x+c$ cuts the \boldsymbol{x}-axis. The graph of $y=a x^{2}+b x+c$ is a parabola and the quadratic will have 0,1 or 2 solutions (called roots or zeros) depending on the parabola's position in relation to the x-axis.
The number of solutions (roots or zeros) can be determined quickly from the sign of the number inside the square root, which is called the discriminant (or Delta): $\Delta=b^{2}-4 a c$

Sign of $\Delta=b^{2}-4 a c$	Number of solutions (roots or zeros)	Parabola feature
$\Delta>0$	$2 \quad-$ due to the $\pm \sqrt{\Delta}$ in the equation	cuts the x-axis twice
$\Delta=\mathbf{0}$	$1 \quad-$ the square root gives ± 0	touches the x-axis
$\Delta<0$	0 real - can't take roots of negative numbers	not cross the x-axis

Exercises

Try solving these first questions with a variety of methods.

1) $x^{2}+5 x+4=0$
2) $x^{2}+10 x+21=0$
3) $x^{2}+4 x-21=0$
4) $3 x^{2}+16 x+5=0$
5) $4 x^{2}+2 x-2=0$

Some more difficult questions:
6) $x^{2}-5.6 x+31.36=0$
7) $5 x^{2}+3 x+4=0$
8) $2 x^{2}+8 x+5=0$
9) $-3 x^{2}-6.5 x+2.2=0$

Solve these by completing the square
10) $x^{2}-8 x+11=0$
11) $x^{2}-6 x+3=0$
12) $x^{2}+2 x-7=0$
13) $2 x^{2}+6 x+3=0$
(Hint: Divide both sides by 2 first. Yes you will have to work with fractions.)

Answers

1. $x=-1$ or $x=-5$
2. $x=-7$ or $x=-3$
3. $x=3$ or $x=-7$
4. $x=-15$ or $x=-\frac{1}{3}$
5. $\quad x=\frac{1}{2}$ or $x=-1$
6. No real solution
7. No real solution
8. $x=-0.775$ or $x=-3.22$
9. $x=0.298$ or $x=-2.46$
$10 \quad x=4+\sqrt{5} \approx 6.23$ or $x=4-\sqrt{5} \approx 1.76$
10. $x=3+\sqrt{6} \approx 5.45$ or $x=3-\sqrt{6} \approx 0.55$
11. $x=-1+\sqrt{8} \approx 1.83$ or $x=-1-\sqrt{8} \approx-3.83$
12. $x=-\frac{3}{2}+\frac{\sqrt{3}}{2} \approx 0.63$ or $x=-\frac{3}{2}-\frac{\sqrt{3}}{2} \approx-2.37$
