METHODS FOR MODELLING FRACTURE PROPAGATION IN BRITTLE ELASTIC MATERIALS

Our research project is focused on the development of an efficient numerical simulation method, known as the phase field finite element method, for modelling the propagation of fractures in brittle-elastic materials.

COMPETITIVE ADVANTAGE

The phase field finite element method is an innovative numerical simulation technique that:

- Models the development of new surfaces or fractures where separation occurs within a material
- Does not exhibit a heavy dependency on the mesh geometry used for simulations or require frequent and time-consuming mesh regeneration steps to be performed as many competing techniques do
- Can be implemented within the standard finite element framework familiar to many engineers

SUCCESSFUL APPLICATIONS OF RESEARCH

 The method has been successfully applied to model load-displacement responses and crack paths for a range of laboratory-scale fracture tests

IMPACT

- Provides engineers with tools for analysing the performance of equipment and structures built from brittle-elastic materials
- Potential for improvements in the efficiency and reliability of equipment and structures built from brittle elastic materials

CAPABILITIES AND FACILITIES

• A full-functionality phase field finite element code is currently under development