
Technical Report TR3: ISIF ASIA Funded Project

30 April 2019

Security Architecture for IoT

Prof. Vijay Varadharajan, Dr Uday Tupakula, Kallol Karmakar

Advanced Cyber Security Engineering Research Centre (ACSRC)

Faculty of Engineering and Built Environment

The University of Newcastle

Executive Summary

The report presents project summary on the “Software Defined Networks based Security Ar-

chitecture for IoT Infrastructures” project funded by the ISIF group. There are three milestones

for the project with specific deliverables for each milestone. As part of first milestone, we have

conducted detailed survey of attacks related to IoT and proposed the design and development

of feature distributed malware attacks for IoT. We then developed some security requirements

that need to be considered for designing and developing security architecture for IoT Applica-

tions. Please refer to Milestone 1 report for more details on the outcomes. As part of second

milestone, we developed a lightweight mutual authentication protocol based on a novel pub-

lic key encryption scheme for smart city applications. The proposed protocol takes a balance

between the efficiency and communication cost without sacrificing the security. Please refer

to Milestone 2 report for more details on the outcomes. In this report we present a summary

of the outcome of third milestone ”Security Architecture for IoT” which consists of the fol-

lowing tasks: i) Report on the Design of Security Architecture and Attack Detection in IoT

Infrastructures and ii) Proof of Concept of Security Architecture for IoT.

As part of third milestone, we have deigned and developed a security architecture for IoT net-

works by leveraging the underlying features supported by Software Defined Networks (SDN).

Our security architecture restricts network access to authenticated IoT devices. We use fine

granular policies to secure the flows in the IoT network infrastructure and provide a lightweight

protocol to authenticate IoT devices. The security policies are based on parameters such as user,

device, switch/gateway, location, routing information, services accessed as well as trust labels

associated with the switches and controllers in different domains. We have also considered on

demand security of user data by encrypting the traffic at the edge device and decrypting the

traffic at a device closer to the destination (which is intended to receive the traffic. A novel

feature of the proposed architecture is its ability to specify path based security policies, which

is a distinct advantage in SDN enabled IoT infrastructures. For instance, certain IoT communi-

cations need to go through a path of switches with certain security attributes. Such path based

policies are critical for secure applications but also useful for normal applications with different

requirements (e.g. bandwidth requirements for different traffic such as audio versus video traf-

fic). At another level, our policies will be able to specific rules reflecting social aspects such as

devices belonging to certain groups of users such as ethnicity or gender as well as constraints

related to certain cultures such as different cultural organizations and their attributes. Such

features can address various characteristics associated with social norms and ethics associated

with the data collected from these devices as well as expected interactions between various

devices in different domains. These can be achieved due to fine granular nature of the policies

and its ability to reflect the context and their associated characteristics.

An overall feature of the security architecture is its ability to make use of the dynamic visi-

bility of the network connectivity and the flows in the network in achieving dynamic updates

to security policies for achieving secure communications. This is particularly important with

emerging new security threats and the need to dynamically update security policies based on

the distributed network state and detection of new anomaly events. Such an integrated security

approach involving authentication of IoT devices and enabling authorized flows can help to

protect IoT networks from malicious IoT devices and attacks such as IoT botnet based DDoS

attacks. We have implemented and validated our architecture using ONOS SDN Controller

and Raspbian Virtual Machines, and demonstrated how the proposed security mechanisms can

counteract malware packet injection, DDoS attacks using Mirai, spoofing/masquerading and

Man-in-The-Middle attacks.

The authors would like to thank ISIF ASIA for their financial contribution to the Project.

2

CONTENTS

1 Introduction 2

2 SDN based Security Architecture for IoT Network Infrastructure 5

2.1 Why SDN for IoT Security? . 6

2.2 Security Architecture for IoT Network Infrastructure 6

2.3 Policy Based Security Architecture for Intra Domain 8

2.3.1 IoT Security Application (ISA) . 10

2.4 Policy Based Security Architecture for Inter Domains 13

2.4.1 Security Architecture Walk-through 16

2.5 User Attributes . 19

3 Implementation 20

3.1 Threat Mitigation . 20

3.1.1 Threats: . 20

3.1.2 Mitigation: . 22

3.2 Performance . 26

4 Related Works 31

4.1 Policies and SDN . 31

4.2 IoT Security and Attacks . 32

4.3 Use of SDN for IoT . 32

5 Conclusion 34

1

1. INTRODUCTION

The report presents project summary on the “Software Defined Networks based Security Ar-

chitecture for IoT Infrastructures” project funded by the ISIF group. There are three milestones

for the project with specific deliverables for each milestone.

As part of first milestone, we presented an overview of the IoT Architecture with discussion on

the different layers of the architecture and protocols that are used at different layers of the IoT

Architecture. Then we presented threat model for the IoT Architecture with discussion on the

several attacks that are possible at different layers of the IoT Architecture. We also proposed

the design and development of feature distributed malware attacks for Internet of Things in the

context of smart homes. Smart homes consist of various smart home devices, providing conve-

nient services to the tenants. These devices are usually connected to the Internet, and the tenants

can integrate individual devices and make smart home workflows using Internet services such

as IFTTT. The focus of our work was on how the attackers can generate various cyber-physical

and advanced cyber-attacks by exploiting this integration aspect in smart home. In particular,

we have designed and developed an advanced feature distributed malware that can be used to

perform various malicious activities such as stealing the victim’s IFTTT cookies, using smart

devices as information sources of the malware and distributing malware functionalities to other

devices, performing malicious without being noticed, causing financial damages to the victim,

and evasively exfiltrating data. Our experiments show that the proposed attacks enable the at-

tackers to control any smart home device integrated with IFTTT, without requiring compromise

of individual smart home devices. We believe our approach of using the integrating Internet

service as an attack vector and distributing malware features to the smart home devices will be

helpful to the development of more secure smart home environments and different IoT appli-

cations. Finally, we have analysed some of the previously proposed techniques to deal with the

2

attacks in IoT applications and identified few security requirements that need to be considered

for designing and for developing security architecture for IoT applications.

As part of second milestone, we developed a lightweight mutual authentication protocol based

on a novel public key encryption scheme for smart city applications. The proposed protocol

takes a balance between the efficiency and communication cost without sacrificing the security.

We evaluated the performance of our protocol in software and hardware environments. On

the same security level, our protocol performance is significantly better than existing RSA and

ECC based protocols. We also provided security analysis of the proposed encryption scheme

and the mutual authentication protocol. The proposed protocol is an n-pass lightweight mutual

authentication protocol. The value of n is related to the desired security level of the protocol

and the system parameters of the encryption scheme. The lightweight mutual authentication

protocol applies the proposed encryption scheme as a building block. The security of the pro-

posed n-pass mutual authentication is guaranteed by the security of the Needham-Schroeder

protocol. We have shown that our protocol can resists attacks such as man-in-the-middle attack

and impersonation attack. We evaluated the protocol on Contiki OS and CC2538 evaluation

modules. The experimental evaluations show that our protocol is respectively 88 and 7 times

faster than RSA and ECC on the security level of 112 bits. The mutual authentication time can

be further reduced if online/offline technique is enabled.

In this report we present a summary of the outcome of third milestone ”Security Architecture

for IoT” which consists of the following tasks: i) Report on the Design of Security Architecture

and Attack Detection in IoT Infrastructures and ii) Proof of Concept of Security Architecture

for IoT.

During this period, we have designed and developed security architecture which makes use of

Software Defined Networks (SDN) to securely manage the IoT infrastructures. SDN decouples

the control plane from the data plane, and provides a centralized authority (SDN Controller) to

manage the resources (such as network and IoT devices) within the domain under its control.

As the SDN Controller has visibility over its network domain, the applications running in the

Controller have the ability to manage the security of the underlying IoT network infrastructure.

The use of SDN to manage the IoT devices is not in itself new; other works [1, 2] have used

3

such an approach to detect malicious devices and detect attacks. In [3] authors have presented a

comprehensive survey of how SDN can be used to secure the IoT devices and the IoT network

infrastructure. However, in our architecture, SDN Controller acts as a security policy decision

authority, and the network switches and IoT gateways enforce the security policies in the IoT

network infrastructure. Such a policy driven approach provides the capability to achieve secure

management of network flows in an IoT infrastructure in a dynamic manner, and deal with

security attacks in a proactive manner.

The specific contributions for third milestone can be summarised as follows:

• A SDN based security architecture that uses a policy based approach to secure IoT network

infrastructure and detect malicious IoT devices and attacks in intra domains.

• Authentication of IoT devices using a light-weight protocol, which is in turn used in the

provisioning of network services to authenticated IoT devices.

• Secure access to network services by authenticated devices using OAuth protocol.

• Extension of SDN based security architecture to secure IoT network infrastructure and detect

malicious IoT devices and attacks in inter domains.

• Demonstration of the proposed security architecture and protocols using a realistic IoT sce-

nario, showing how it can protect IoT infrastructure from attacks such as Malware Injection,

DDoS, Spoofing/Masquerading and Man-in-The-Middle (MiTM) attack.

• Performance analysis of the proposed solution for securing IoT infrastructure.

The report is structured as follows. Chapter 2 describes the SDN based security architecture for

IoT infrastructure. Chapter 3 demonstrates the application of the proposed security architecture

using different IoT scenarios. In particular, we discuss IoT botnet attack scenarios and how

they are successfully counteracted using our security architecture. Relevant related works are

discussed in Chapter 4. Finally, Chapter 5 concludes the report.

4

2. SDN BASED SECURITY ARCHITECTURE FOR IOT

NETWORK INFRASTRUCTURE

We use Software Defined Networks (SDN) to develop our security architecture for IoT network

infrastructure. We first describe the rationale behind the choice of SDN as the underlying

technology to secure IoT network infrastructure. Then we describe our security architecture

for IoT network.

GWI

*GW‐ IoT Gateway
*N‐IoT Node
*PbSA‐ Policy based Security Application

NI

SW1 SW2 SW3 SW4

SouthBound Interface (Forwarding Devices)

OpenFlow Swithces

IoT Gateways

IoT Nodes

Sensors/Actuators

GWII

NII NI NII

User A

User B User C

User D

User E User F

NorthBound Interface

Evaluation
Engine

Policy Manager

Enforcer

Pb
SA

Repositories

IoT Authorization
Authority

IoT Authentication
Authority

IoT Security Application

Developed Security Applications

Other Network Applications

SDN Core Applications and Modules

Figure 2.1: Security Architecture for IoT Network Infrastructure

5

2.1 Why SDN for IoT Security?

The features of SDN technology which make it a suitable platform for securing IoT infrastruc-

ture are as follows:

Separation of Control Plane from Data Plane: This is useful for designing our policy based

security architecture at the SDN Controller in the control plane and enforcing the security poli-

cies in the network switches and IoT devices in the data plane. The SDN Controller communi-

cates with the switches in the data plane using open and standardised interfaces and protocols

(OpenFlow), which is useful for securing the communications between the policy decision au-

thority in the Controller and the enforcement mechanisms in the IoT devices and switches.

Network Domain View: The SDN Controller has visibility over the whole network domain

under its jurisdiction. This can be used by our architecture to achieve secure management of

IoT devices and flows in the network infrastructure. The Controller maintains a topological

information database which logs information about all the forwarding devices connected to

the Controller. This will be useful in the specification of path based security policies in our

architecture.

SDN Northbound Applications: The SDN provides flexible northbound API which enables us

to develop secure applications or use third-party applications to securely monitor and control

the behaviour of IoT devices and network nodes in the SDN network domain. Our security

architecture has a secure application running on top of the Controller (developed using its

northbound API) that provides security services in the IoT infrastructure.

2.2 Security Architecture for IoT Network Infrastructure

Our proposed SDN based security architecture uses policies to control and manage IoT devices,

services and network entities (switches, nodes and gateways). Figure 2.1 shows the proposed

SDN based security architecture. The heart of the security architecture is the SDN Controller

where security policies reside and are evaluated. The IoT actuators and sensors are the end

devices and connect to the IoT Nodes. These IoT Nodes are connected to the IoT Gateways via

6

either via wired or wireless networks. The IoT Gateways are connected to the SDN Controller.

In some cases, OpenFlow switches can act as IoT Gateways/Nodes. Our implementation con-

siders OpenFlow switches as IoT Gateways. Users are connected to the OpenFlow switches.

The IoT devices are of a heterogeneous nature. The IoT devices can use different network

protocols, authentication mechanism, can have different operation and application platforms.

Furthermore, there can be a large number of IoT devices. Hence, a scalable solution is needed,

recognizing the individual capabilities of the connected IoT devices. In our security architec-

ture, we have created a device provisioning mechanism for each IoT device groups using a

template based approach. Each template consists of variables explaining device capabilities

like protocol, manufacturer, authentication mechanisms and other features. This device pro-

visioning functionality is integrated with the core application of the Controller, enabling it to

provision the IoT devices at runtime.

In our implementation, we have developed two secure applications that control and manage

the behaviour of IoT devices in the network. These applications runs over an SDN Controller.

The first one is the Policy based Security Application (PbSA), and the second one is called IoT

Security Applications (ISA). ISA has two sub-modules, namely IoT Authentication Authority

and IoT Authorization Authority. Before describing in detail the functions of each of these

applications and modules, we first provide a high-level overview of the security interactions

with the IoT devices in the network infrastructure.

The operation of our security architecture can be viewed as involving two phases. In the first

phase, we have interactions that are associated with authentication. New IoT devices that are

to be connected to the network need to be authenticated. IoT Gateways forward IoT device

information (such as device ID) using Packet in messages to the SDN Controller. The IoT

Authentication Authority module in the ISA application carries out the authentication process

using a lightweight elliptic curve cryptography (ECC) based authentication protocol. This

process of IoT authentication will in turn make the network domain and services visible to

authenticated IoT Devices.

In the second phase, the PbSA checks the network service request from authenticated IoT

devices against the specified security policies. The PbSA has fine grained policies that control

7

the behaviour of the IoT devices; for instance, a user “A” accessing via OpenFlow Switch 3

(SW3) is allowed to read data from Sensor 2 connected through Gateway I (SW1 & Node NII).

We describe the security policies and their implementation in detail in Section 2.3. If the service

request is permissible according to PbSA security policies, then our security architecture uses

the OAuth protocol to provide a token to the IoT device. The IoT device uses this token for

further communication in the network. This process is jointly performed by PbSA and IoT

Authorization Authority.

2.3 Policy Based Security Architecture for Intra Domain

Our IoT network infrastructure consists of OpenFlow switches/IoT Gateways and end hosts

(IoT sensors/actuators). We have used a single SDN Controller to manage the IoT network

infrastructure. The network devices (OF devices) forward the packets generated by the IoT

devices/users, which are then subjected to the policies specified in the SDN Controller for

transfer in the network. Figure 2.1 shows the Policy-based Security Architecture (PbSA) for

securing the IoT Infrastructure using SDN. As PbSA is designed to be modular, the components

of PbSA can be implemented on a single host or can be distributed over multiple hosts. Here,

we provide a detailed description of different modules of PbSA.

PbSA consists of four major modules, namely a) Policy Manager, b) Evaluation Engine, c)

Repositories & d) Policy Enforcer.

• Policy Manager: Is the core component of the security architecture, as it manages every

operation such as extracts IoT device flow attributes, updates the Topology Repository, and

instructs the Policy Enforcer to enforce the policies at the OpenFlow IoT Gateways. It also

communicates with the ISA application for the transfer of OAuth token after checking the

network service request from the IoT devices.

• Evaluation Engine: Evaluates the service request against the relevant policies stored in the

Policy Repository.

• Repositories: Our architecture has two repositories: a) Topology Repository and b) Policy

Repository. The Topology Repository contains the network topology of IoT devices and end

8

hosts/users. SDN controller has its own device Topology Repository. We are using the same

Topology Repository for this purpose. The Policy Repository contains the Policy Expressions

(PE) associated with the various IoT devices and the associated flow attributes. The attributes

in PEs also include security parameters such as security labels associated with the OpenFlow

IoT Gateways.

• Policy Enforcer: Fetches the required information from the OpenFlow IoT Gateways and

enforces the flow rules obtained from the Policy Manager.

Security Policy Specifications

The security policy specifications are expressed as Policy Expressions (PE), which specify

whether packets and flows from IoT devices and end hosts follow a particular path or paths in

the network, and the conditions under which the packets and flows follow these paths. The PE

specification syntax uses an enhanced version of RFC1102 [4]. They are fine-grained and spec-

ifies a range of policies using various attributes of IoT devices and flows; for instance, these

attributes include different types of devices, source and destination attributes, flow attributes

and constraints, requested services, security services and security labels. The attributes are:

(a) Flow Attributes: Flow ID, sequence of packets associated with the Flow, type of packets,

Security Profile indicating the set of security services that are to be associated with the packets

in the Flow; (b) Device Attributes: ID specific to IoT sensor/actuator; (c) Switch Attributes:

Identities of the Switches and Security Label of the Switches (In our case, these are OpenFlow

IoT Gateways); (d) Host Attributes: Identities of Hosts such as Source/Destination Host ID;

(e) Fow and Domain Constraints: Constraints such as Flow Constraints (FlowCons) and Do-

main Constraints (DomCons) associated with a specific device Flow; (f) Services: For which

the PE applies (e.g. FTP storage access); (g) Time Validity: The period for which the PE

remains valid; and (h) Path: Indicates a specific sequence of switches any particular flow from

specific IoT devices/users should traverse.

The Constraints (Flow and Domain) are conditions that apply to specific flows from any IoT

devices. For instance, a constraint might specify the flow from a specific type of sensor, should

only go through a set of switches that can provide a guaranteed bandwidth. From a security

point of view, a constraint could be that a flow should only go through OpenFlow switches that

9

Device Gateways/OF AP IoT Authorization
Authority

IoT Authentication
Authority

PbSA

S0: X= ID+Hello+ NS
S1: Packet_IN(X)

S2: Initiate ECC device authentication procedure Generates a Є Zq*,
Td= aP

S3: Send (IDd, Td, Rd)

S4: Send (Tgt, M1)
Kgt‐>gt=(Sgt+a)Tgt;
M’=H1(0,kd‐>gt);
Check M’==M1;

If valid set
K=H1(IDd||IDgt, kd‐>gt);

M2=H1(1, kd‐>gt)
S5: Send (M2) M’’=H1(1, Kgt‐>d);

Checks M2==M’’;
If valid then set

K=H1(IDd||IDgt,kgt‐>d)

S6: Request for
Network Service (NS)
 Authorization(K)

Checks Policy
Expression for

accessing Network
Services (NS)

If ok then provides
Authorization
Permission

S7: Authorization
Permission(Kp)

Generates OAuth
Token (Ko)

S8: Send Authorization
Token (Ko)

ECC procedure
OAuth procedure

Figure 2.2: Security Protocol process diagram

have a particular Security Label. The PEs support wildcards for attributes, enabling it to set

policies for a group of IoTs/services. A simplified Policy Expression template is as follows:

PEi= < FlowID, IoTDeviceID, SourceAS,DestAS, SourceHostIP,DestHostIP,

SourceMAC,DestMAC,User, F lowCons,DomCons, Services, Sec− Profile,

Seq − Path >:< Actions >

where i is the Policy Expression number.

2.3.1 IoT Security Application (ISA)

In this section, we briefly explain the security protocols used in our security architecture. These

are implemented by the IoT Security Application (ISA).

In our architecture, each IoT device has a unique ID and connects to IoT Gateways using wire-

less networks. The IoT Gateways are basically OpenFlow Switches/Access Points (OF-AP)

which support OpenFlow protocol. As mentioned earlier, our security protocol has two phases,

namely the authentication phase followed by the policy application and the OAuth protocol

10

phase.

IoT devices are authenticated in the first phase of the security protocol. We have used a

lightweight ECC protocol [5] to authenticate the IoT devices. An IoT device sends a “Hello” mes-

sage with its ID (Message X in Figure 2.2) requesting for a Network Service (NS). The OF-APs

sends the ID and Network Service (NS) request via Packet in messages to the IoT Authentica-

tion Authority. IoT Authentication Authority performs ECC authentication of the IoT devices.

At the end of the authentication phase, IoT Authentication Authority authenticates the IoT de-

vice and establishes a common secret key with the IoT device that can be used for further secure

communications.

In the authorization phase, the PbSA checks the Network Service (NS) request from the IoT de-

vice using the security policy specifications described above. The IoT Authentication Authority

uses the key established by the ECC protocol in the authorization request to PbSA. If the device

and flow attributes for the Network Service (NS) satisfy the Policy Expressions, then the PbSA

requests the IoT Authorization Authority to generate the OAuth Token for the particular IoT de-

vice for the specific Network Service(s) requested. The token is then used by the authenticated

IoT device to access the required Network Service(s). This process is illustrated in Figure 2.2.

Lightweight ECC based Authentication for IoT Devices

The Elliptic Curve Cryptography (ECC) based public key system uses the algebraic structure

of elliptic curves as their finite points. It is computationally faster than other public key cryp-

tosystems such as RSA. Hence it is more suitable for computationally constrained IoT devices.

It can be used to achieve key agreement as well as encryption and digital signature. In our

security architecture, the IoT devices are authenticated using a lightweight ECC based au-

thentication protocol proposed in [5]. Then we use the key established using this protocol to

encrypt the data from the authenticated IoT devices. This lightweight security protocol works

in conjunction with the OAuth protocol.

The ECC based authentication protocol used in our architecture has 3 stages: Setup, Installation

and Key Agreement. Algorithm 1 below gives an outline of the 3 stages. The Key Agreement

(Stage 3) is illustrated in Figure 2.3. The performance of the proposed protocol (in terms of

both computation and communication costs) is higher than the previously proposed protocols.

11

Device IoT Authentication Authority
Calculates: ࢇ	ࣕ	ࢗࢆ∗ ;

ࢊࢀ ൌ ࡼࢇ ሺࢊࢀ, ,ࢊࡰࡵ →ሻ	ࢊࡾ Calculates: ࢈	ࣕ	ࢗࢆ∗ ;
࢞ࢀ ൌ ࢈ ൅	࢚࢘ࢍ;
࢚ࢍࢀ ൌ ;࢞ࢀ	

࢚ࢍ⇒࢚ࢍ࢑ ൌ ሺ࢚ࢍࡿ ൅ ;࢚ࢍࢀሻࢇ
ᇱࡹ ൌ ,૚൫૙ࡴ ;൯࢚ࢍ⇒ࢊ࢑
Checks ࡹᇱ ൌൌ ;૚ࡹ

If valid set,
ࡷ ൌ ࢊࡰࡵ૚൫ࡴ ∥ ,࢚ࢍࡰࡵ ;൯࢚ࢍ⇒ࢊ࢑

←ሺࡹ,࢚ࢍࢀ૚ሻ ࢊ⇒࢚ࢍ࢑ ൌ ࢊࡾሺ࢞ࢀ ൅ ,ࢊࡰࡵ૛൫ࡴ ࢈࢛࢖ࡼ൯࢚ࢍ࢟ ൅ ;ࢊࢀ
૚ࡹ ൌ ,૚൫૙ࡴ ;൯ࢊ⟹࢚ࢍ࢑

૛ࡹ ൌ ,૚ሺ૚ࡴ ሻ࢚ࢍ⇒ࢊ࢑ ሺࡹ૛ሻ→ ᇱᇱࡹ ൌ ,૚ሺ૚ࡴ ;ሻࢊ⇒࢚ࢍ࢑
Checks ࡹ૛ ൌൌ ;ᇱᇱࡹ

If valid then set
ࡷ ൌ ࢊࡰࡵ૚ሺࡴ ∥ ,࢚ࢍࡰࡵ ሻࢊ⇒࢚ࢍ࢑

Figure 2.3: Key agreements between Devices and IoT Authentication Authority

Hence it is particularly suitable for the IoT environment as it shifts the processing load from

the resource-limited devices to the more powerful servers in the Controller.

Algorithm 1: ECC Protocol
1 Step1 (Setup): a) The IoT Authentication Authority chooses a prime number q,

computes Fq, E/Fq, Gq, P ;
b) The IoT Authentication Authority chooses a master key x and calculates public key
Ppub = xP ∈ E/Fq;

c) It then computes two hashes H1 and H2;
d) Fq, E/Fq, Gq, P, Ppub, H1, H2 are made public.;

2 Step2 (Installation): IoT Authentication Authority and devices separately generate and
validate their private and public keys.;
Rgt = rgtP , where rgt is a random number rgt ∈ Z∗

q .
ygt = H1(IDgt, Rgt).x
Rd = rdP , where r is a random number ri ∈ Z∗

q .
yd = H2(IDd, ygt).x
Sd = rd + yd
Sd and Rd are the private and public values of d.
At the end of this stage each device has its own Sd, Rd, yd, rd and IoT Authentication
Authority has (ygt, rgt);

3 Step3 (Key Agreement): Between IoT Authentication Authority and IoT Devices;

In [5], the authors analyze the security of the ECC authentication scheme and show that it

is secure against active attackers who are capable of eavesdropping, modifying and injecting

messages in the protocol.

Authorization for Network Services using OAuth Protocol

The authorization service using the OAuth protocol [6, 7] works as follows: It consists of four

actors: i) Client, ii) Resource Owner, iii) Resource Server and iv) Authorization Server. The

client contacts the Resource Owner of the resource. The Resource Owner grants the access

12

to the client by sending an authorization code. The client delivers the received authorization

code to the Authorization Server. The Authorization Server verifies the authorization code and

releases a token containing the details of the consent provided to the client (time limit, scope,

and so on). The client forwards the token to the Resource Server. The Resource Server checks

the validity of the received token, and in the affirmative case provides access to the protected

resource.

In our SDN-IoT architecture, network services are the resources. Figure 2.2 shows the OAuth

Token handover process (marked with a continuous green line). First, the IoT Authentication

Authority authenticates the IoT devices using ECC protocol mentioned above. After the authen-

tication phase, it requests access to network services on behalf of the authenticated IoT devices.

The PbSA checks the policy repository and if the network service request is valid, then it issues

an Authorization Permission (Kp), which is forwarded to the IoT Authorization Authority. The

IoT Authorization Authority generates the OAuth Token (Ko). We have used JSON Web Token

(JWT) for this purpose. The IoT Authorization Authority forwards the OAuth Token to the IoT

devices. The OAuth Token (Ko) contains the user ID, IoT device ID, device type (e.g. sensor or

actuator) and expiry time (network service access time). The IoT device integrates this OAuth

Token in their network packet while accessing the network services.

In our current implementation, we have signed the OAuth Token using the private key of IoT

Authentication Authority Sgt, which was used in the ECC authentication phase. The signature

is verified by the network service using the public key of IoT Authentication Authority Rgt

before service provision. (In a more general distributed architecture where IoT Authorization

Authority and IoT Authentication Authority are not co-located, the ECC authentication proto-

col will be used to generate public and private values for IoT Authorization Authority using a

similar process as for an IoT device and this private key will be used to sign the OAuth Token).

2.4 Policy Based Security Architecture for Inter Domains

In this Section, we will describe how the Policy Based Security Architecture can be extended

to support secure end to end communication between IoT devices in multiple AS domains.

13

We assume that each AS domain is controlled by a SDN Controller. Each Controller runs a

separate instance of the PbSA and ISA application. We have added a new module to handle the

AS domain communication. It is known as Packet Handle Creator. A Packet Handle Creator

module creates the necessary handles from the visited Controller which is piggy backed with

the payload from the Policy Manager. These handles are used to check the authenticity of the

packet and the enforcement of policies at the switches.

With intra-domain communications, the traffic from source to destination passes through de-

vices within a single SDN domain and the requested services are provided by the servers and

devices in the same domain. In this case, the traffic and service requests are subjected to se-

curity policies in the PbSA in the SDN Controller of that domain. The routing process begins

from the host that is generating the packets and the request, which is the source of the com-

munication. This source host could be any client, such as a mobile device. The initial packet

header from the source host is sent by the switch (to which this host is connected) to the SDN

Controller in the AS domain. The header contains all the usual network and service parameters

such as the source address, the packet type. The PbSA application in the Controller extracts

the relevant parameters from the incoming packets and uses the Policy Repository and the Pol-

icy Manager to determine whether the relevant Policy Expressions are satisfied. If the Policy

Expressions are valid for the incoming packets, then PbSA will enforce the specified actions as

flow rules in the appropriate data plane devices such as switches to transfer the packets.

Inter-domain communications for IoT devices involving multiple domains require cooperation

between SDN Controllers, as the communications are subject to security policies of multiple

Controllers. Hence inter-domain routing of traffic requires an SDN Controller in one AS do-

main to have knowledge of other Controllers in other AS domains. To create a topological map

of a distributed SDN environment, we have used the traceroute mechanism. Note that although

there are other alternatives [8] for topology discovery such as Border Gateway Protocol (BGP)

and Internet Routing Registries, each one of them has its own issues. For the purpose of our

prototype, traceroute was found to be sufficient and the easier one to use. It is not a critical part

of our design and it is mainly an implementation issue. From the architecture point of view,

each Controller has a Topology Repository to store the mapping of the topology information.

14

SDN Controllers in each AS keep this Repository updated by running traceroute at different

times. With traceroute, we have included an additional security attribute, a Security Label,

in the ICMP response message from each AS SDN Controller. The intention of the Security

Label is to reflect the level of security associated with that particular Controller. In our current

architecture, this Security Label is hardwired (static) and is specified at the time of installation

of the Controller based on the reputation of the manufacturer of the Controller. In the next stage

of the development of the architecture, we will develop a meta-level security protocol that will

enable secure and dynamic updating of the Security Label depending on the behaviour of the

Controller over time. This will be done as part of a trust model which we are in the process of

developing for distributed SDN environment. We have modified the ICMP response messages

to attach the Security Labels. Hence each AS domain SDN Controller now has the ability to

discover the topological information as well as the levels of security associated with all the

neighboring AS domain Controllers in this Repository.

Consider the distributed SDN environment shown in Figure 2.4 and the associated Topology

Repository tables are shown in the figure too. Each hexagon in Figure 2.4 represents an AS

domain. We have represented the AS Gateways using Gateway OpenFlow Switches. Each Ta-

ble in Figure 2.4 shows the Topological Repository for the respective domains SDN controller.

AS ID is the identity of a particular AS, Sec Label is the security label of the AS domain and

Hops is the distance from source to destination AS. The edge OpenFlow Switches are repre-

sented using the notation ([source AS ID]SW[destination AS ID]), e. g. switch connecting

AS1 to AS2 is represented as 1SW2.

In the inter-domain setting, our architecture introduces two additional mechanisms which have

conceptual significance.

Handle: The first mechanism is a Handle. PbSA creates a Handle and tags to each IoT device

flow request. The Handle consists of a list of visited AS domain IDs. The Packet + Handle is

then transferred to the next AS Domain Controller. A similar process is repeated as the packet

goes through all the transit AS domain SDN Controllers until the packet reaches its destination.

This Handle will be protected for integrity and it will be used in the validation of flows across

multiple domains.

15

Policy Transfer Token The second mechanism is a Policy Transfer Token, which comprises pol-

icy constraints that are transferred from one AS domain to the subsequent transit AS domains

and which need to be satisfied by the flow, as the packets are transferred. These constraints

need to be taken into account in addition to the policy constraints of the transit domains. For

instance, if there is a constraint that an IoT devices traffic should only pass through AS domains

with security label greater than a certain threshold, then this constraint needs to be satisfied by

subsequent transit domains. Suppose an AS domain SDN Controller (with AS ID = 10) has

a constraint that packets should only be forwarded through a path of AS domain SDN Con-

trollers that have a security label greater than SL3. In distributed systems, in general, it is not

possible for one domain Controller to know about policies of other domains. Hence there is

a need to transfer the policy constraints, which are communicated via Policy Transfer Tokens.

The significance of the transfer token is that the policy constraints that are transferred are only

those policies that are specific to flows and packets in that flow. Such a mechanism is useful

as it enables partial delegation of policies that are flow dependent. The next section describes

in detail the specification of security policies. In this project, we assume that the AS domain

Controllers are secure and trusted, and that if and only if the policies can be satisfied in the

domain, the receiving Controller will accept the packets.

In terms of the notation, we denote the Handle as HASk
i which is tagged to the packet (flow

request), where Hi is the Handle for a particular communication i, and k is the ID of the AS

domain SDN Controller which created the Handle. Similarly, the Policy Transfer Token is

denoted as PTTASk
i , where again i denotes the specific communication and k denotes the ID

of the AS domain. Hence an AS domain SDN Controller creates the augmented Packet using

the original Packet as well as the Handle and the Policy Transfer Token.

2.4.1 Security Architecture Walk-through

Let us now give a brief walk-through of the operation of the proposed security architecture

described above. We will use the inter-domain scenario given in Figure 2.4 to illustrate the

various steps involved. The Tables beside each of the AS domains in Figure 2.4 represent the

Topology Repository. Table 2.1 shows the policies in each of these AS domains stored in the

Policy Repositories of PbSA. Here, X is a IoT device and its logging information in a database

16

10.0.0.2
00:00:00:00:00:01

10.0.0.0/24

172.16.10.0/24

192.168.10.0/24

192.168.52.0/24

192.168.52.72
00:00:00:00:01:01

2SW
3

X
Y

No AS ID Sec_Label Hop
1 AS1 SL2 2
2 AS3 SL3 2
3 AS4 SL4 2

No AS ID Sec_Label Hop
1 AS1 SL2 2
2 AS2 SL3 2
3 AS4 SL4 2

No AS ID Sec_Label Hop
1 AS2 SL3 2
2 AS3 SL3 2
3 AS1 SL2 4

No AS ID Sec_Label Hop
1 AS2 SL3 2
2 AS3 SL3 2
3 AS4 SL4 4

Q
C

C

C

C

C = SDN controller VM; Mininet = Mininet VM; Apps = NBI;
 Q = Quagga VM (for static routes) & VM Pair = C+ Mininet

VM
Pair1

VM
Pair2

VM
Pair3

VM
Pair4

Figure 2.4: Implemented Network with Routing Information.
server in Y.

Y is a trusted database server sitting in AS4. However, the IoT device X is a new devices.

Hence, it needs to go through the authentication phase first. AS1 local gateways connecting

the IoT devices passes the necessary information to the AS1 SDN Controller via the packet˙IN

message. ISA application using a light weight ECC protocol authenticates the new IoT devices.

Next, PbSA checks policy repository for a valid policy expression. AS1 contains a valid policy

expression for devices in the IP range 10.0.0.0/24. Thus, the security architecture provides

an OAuth token to the IoT device. The IoT device uses this for future communication. Now,

we will describe how, the devices upload the sensor data to the database server in a different

domain.

The initial packet header from the source device is sent by the switch (to which this host is

connected) to the SDN Controller in that AS domain. The PbSA application in the Controller

extracts the relevant parameters from the incoming packets and uses the Policy Repository and

the Policy Manager to determine whether the relevant Policy Expressions are satisfied. If the

Policy Expressions are valid for the incoming packets, then PbSA will enforce the specified

actions as flow rules in the appropriate data plane devices such as switches to transfer the

17

Table 2.1: Stored Policy Terms

AS ID Policy Expression

AS1 PEAS1
1 =< ∗, (10.0.0.0/24, EDU, SL2), (192.168.52.0/24), 10.0.0.2,

∗, ∗, ∗, ∗, ∗, SL2+ =, (80, 443), conf, ∗ >:< (1SW2, Allow) >

AS2 PEAS2
4 =< ∗, (10.0.0.0/24, EDU, SL2), (192.168.52.0/24), 10.0.0.2,

∗, ∗, ∗, ∗, ∗, SL2+ =, (80, 443), conf, (AS1) >:< Allow >

AS3 PEAS3
2 =< ∗, (10.0.0.0/25, EDU, SL2), (192.168.52.0/24),

∗, ∗, ∗, ∗, ∗, ∗, SL2+ =, (80, 443), conf, (AS1, AS2) >:< Allow >

AS4
PEAS4

2 =< ∗, (10.0.0.0/25, EDU, SL2), (192.168.52.0/24),
10.0.0.2, 192.168.52.72, ∗, ∗, ∗, ∗, ∗, (80, 443), conf,
(AS1, AS2, AS3) >:< Allow >

packets.

In this scenario, the IoT device X (with IP address 10.0.0.2) wishes to upload the sensor data

to the database server Y (with IP address 192.168.52.72). As X and Y reside in two differ-

ent AS domains, communication between them occurs via transit AS domains. After the IoT

device authentication and network authorization phase, packets from X go to the SDN Con-

troller of AS1. As the Policy Expression PEAS1
1 in AS1 matches with this particular network

traffic, HTTP & HTTPS traffic originating from 10.0.0.2 are allowed to go to Y in the subnet

192.168.52.0/24. However let us assume that there is a flow constraint which specifies com-

munications between X and Y must occur only through domains which have security levels

greater than or equal to SL2. This will result in the traffic routed through the AS2 domain

via the OpenFlow Switch 1SW2 (Connected to AS1). A similar process occurs in AS2 and the

traffic is sent to Y in AS4.

We also have constraints such as a flow or flows between two entities in a domain A and

B should only go through paths whose security labels are greater than or equal to a specific

security label L. Satisfying this rule requires the PbSA to determine the labels of the various

paths between the devices, and then check whether the flow constraint is satisfied. The policy

rules can have Boolean expressions such as the security label of the switch Si should be less

than or equal to the security label of the neighbouring switch Si+1. If the neighbouring switch

meets this constraint, then the flow will be directed through it; if not, than another neighbouring

switch will be selected. In general, flow and domain constraints can require some form of

evaluation which is more than just policy matching.

18

2.5 User Attributes

Our Security Architecture can readily support enforce policies with specific rules reflecting

social aspects such as devices belonging to certain groups of users such as ethnicity or gender

as well as constraints related to certain cultures such as different cultural organizations and their

attributes. For instance the security architecture can be used to store all the devices belonging

to specific users and this information can be used to enforce different types of policies based on

the user gender and culture. For instance, the security architecture can be used to enable secure

communication between the same gender or people with specific health issue (that are using

similar body sensors) or advertise cultural/religious events based on the location/religion. Such

features can address various characteristics associated with social norms and ethics associated

with the data collected from these devices as well as expected interactions between various

devices in different domains. These can be achieved due to fine granular nature of the policies

and its ability to reflect the context and their associated characteristics.

19

3. IMPLEMENTATION

We have created a simulation network with ONOS (SDN Controller), Oracle VM Box, GNS3

and mininet-wifi [9] using a workstation (Core i7 - 7700K @ 4.20 GHz CPU; 64 GB of RAM).

Our network configuration is shown in Figure 3.1. The Rasbian VMs are used to simulate IoT

devices. We have developed two ONOS applications, namely Policy based Security Application

(PbSA) and IoT Security Application (ISA).We have used JSON database to create our Policy

Repository.

3.1 Threat Mitigation

We have provided a detailed analysis of the IoT attacks as part of first milestone report. In this

reports, we will focus on specific attacks that can be mitigated with our security architecture.

First we will explain the attack in brief and then explain how our security architecture mitigates

the attack.

3.1.1 Threats:

Threat 1 (Malware injection) : The IoT devices firmware often have low strength security

features burned in their hardware by the device manufacturers. Hence they are vulnerable to

different types of network compromises and packet injection attacks. For instance, an IoT

device with open Telnet port allowing a malicious adversary to inject malware packets and

compromise the device for further coordinated attacks. The execution of malware often uses

the software/API in the Application Layer.

Threat 2 (DDoS) : In the IoT network, an adversary can use IoT devices to launch DDoS

attacks to clog network services and specific IoT device services. Due to many IoT devices not

20

C

A

X

B

Data Centre
192.168.56.110

Kali Linux VM
192.168.56.102

Raspbian VM
192.168.56.101

D

Raspbian VM
192.168.56.114

Raspbian VM
192.168.56.116

R Rogue IoT
Device

192.168.56.104

Figure 3.1: Network configuration

having any security functionality and due to their resource-constrained nature, they are prone

to attacks leading to energy depletion. Then these compromised devices launch coordinated

flooding attacks against the network services and specific users/devices. These attacks target

the Network & Perception layer.

Mirai is a perfect example of Threat 1 & 2. The first phase of Mirai uses malware packet

injection attack to compromise the IoT devices and create zombies/bots. In the second phase,

zombies (compromised devices) use a coordinated packet flooding to clog the network services.

We have provided a detailed discussion on Mirai in subsection 3.1.2.

Threat 3 (Spoofing/masquerading) : In the IoT infrastructure, a malicious adversary can try

to impersonate another user/device. This attack can then be used to capture/modify the sensitive

information from/in the devices as well as send malicious instructions to the actuators.

Threat 4 (MiTM attack) : In a MiTM attack, an adversary intercepts the communication

between the two parties. The IoT infrastructure is also vulnerable to this type of attack. An

adversary or a malicious IoT device can change the IoT device/user ARP caches of the two

communicating parties to initiate a MiTM attack in the IoT infrastructure.

21

3.1.2 Mitigation:

We now present how our security architecture mitigates the above mentioned threats. Threats

1 & 2:

We will use Mirai as an example of Threats 1 & 2. In Mirai, an attacker first injects the malware

into IoT devices and then launches a co-ordinated DDoS attack using these infected devices. In

this section, first, we describe a Mirai based DDoS attack specific to IoT environment and then

show how our security architecture helps to prevent this attack.

Mirai:

Each Mirai infected bot runs two parallel processes. One is a Command and Control (CnC)

center and the other one is ScanListener server as shown in Figure 3.2a.

Once a device is compromised by Mirai code, it starts to scan other vulnerable hosts in the

network. It scans for the open telnet ports with an active telnet server. This phase is the

scanning phase. Once it finds a host, it carries out brute force attack on the telnet server to find

passwords and corresponding user names. Mirai code has 62 default user name and password

combinations (shown by green solid line in Figure 3.2a). The bot uses these pairs of user names

and passwords to log on to the telnet server. After a successful login, it blocks the ports 22, 23

and 80. Thus, the users of this device will not be able to access it. Then the malicious payload is

uploaded on to the captured device to turn it into a bot. If the vulnerable device is successfully

converted to a bot, it connects to the CnC center of the bot. Then it can generate different types

of DDoS attacks. The DDoS attacks that Mirai can generate includes UDP, SYN, ACK, TCP

Stomp, DNS, HTTP, GRE IP and GRE Ethernet Flood.

Mitigation:

We have experimented with all the above flooding attacks and found that our security archi-

tecture is able to counteract them successfully. In this report, we demonstrate the scenario for

Mirai SYN flooding attack.

Consider a simple network shown in Figure 3.1, where 192.168.56.101 is a Raspbian VM and

192.168.56.102 is a Kali linux 2.0 VM, and 192.168.56.104 is a rogue IoT device with Raspbian

VM. We also have two other Raspbian VMs with IPs 192.168.56.114 and 192.168.56.116 that

22

BOT

ScanListener

Payload
(SvC)

C n C

Victim
Device 1

Victim
Device 2

Victim
Device 3

A

B

C

New Telnet Port Scan

A: Telnet Open port responses
back to the Listener;
B: Infect the vulnerable device;
C: Connect with CnC

(a)

(b)

(c)

Figure 3.2: a) Mirai Bot working diagram, b) Mirai successful SYN Flood attack, c) Mirai
attack loader process after dropping the attack

23

are used in other attack scenarios.

To infect the environment, we have disabled our security applications running over the SDN

Controller and compiled the Mirai source code in Kali Linux VM. All the Raspbian VMs are

setup with a default username/password as ”admin/admin”. When the Mirai code is executed

in one of the VM, the malware is injected into the network and they are infected. Figure 3.2b

shows the SYN Flood traffic to the IoT virtual machine with IP 192.168.56.101 (originating

from 192.168.56.102).

Then we activated our security applications (PbSA and ISA), We have policies specific to http

service (PE18) and telnet access (PE16). PE18 states that http communication from IoT

sources A and B to destination data center will be allowed. PE16 states that any telnet re-

quest to IoT devices from any source host will be dropped. So the PbSA denies telnet access

to the attacker and prevents infection of the IoT devices. So that they cannot be turned into

zombies.

PE16= < ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 23, ∗, ∗ >:< Deny >

PE18= < ∗, (A,B), ∗, ∗, ∗, 192.168.56.110, ∗, ∗, ∗, ∗, ∗, (80, 443, 8080), ∗, ∗ >:< Allow >

PE20= < ∗, ∗, ∗, ∗, ∗, 192.168.56.110, ∗, ∗, ∗, ∗, ∗, 21, enc, ∗ >:< Allow >

Now consider that a new zombie IoT device tries to access the network. Authentication will

fail due to ISA application and IoT Authentication Authority.

Now, let us consider that a device has been physically tampered with and made into a zombie

and was able to successfully authenticate itself. In this case, the PbSA application comes

into operation and will prevent the zombie from launching flooding attacks. This is achieved

using PE18 and PE20 which only allow a zombie device to send HTTP traffic and encrypted

FTP traffic to the Data Centre (192.168.56.110). However, the zombie is not able to carry-out

flooding attacks (such as UDP flooding, SYN flooding and HTTP flood). Furthermore, bot

scanning is not possible due to PE16. Hence, the bot can not create new bots as well as flood

the network.

Every vulnerable device responds to the ScanListener in Mirai. Mirai has another process

listener called Loader that lists the responses from the vulnerable hosts. Figure 3.2c shows the

24

list of active vulnerable hosts. In our case, this is zero. Hence this shows how device specific

policies in our security architecture can help to defend IoT devices.

Threats 3 & 4: Threats 3 & 4 are interlinked with each other. Here, in order to launch a

MiTM attack (Threat 4), we have used ARP cache poisoning of host user/devices. The ARP

cache poisoning uses ARP spoofing (Threat 3).

(a)

(b)

(c)

Figure 3.3: (a) Successful MITM attack, (b) Capturing Admin/Password (c) Detected Attack

These two attacks are typical of an insider attack in any IoT infrastructure, where an employee

collects sensor data for malicious purposes [10]. First, we will present how the attacks work

and then we will show how our security architecture helps to protect the network.

We have used one of the Raspberry VMs as an IoT device, and have used a web-server (IP:

192.168.56.101) to log the IoT data. The web-server has a dedicated user/password for the

admin user and devices. In this case, it is: “admin/password ”. The IP address of the Kali Linux

VM is 192.168.56.102. The adversary uses SDNPWN Toolkit to poison the device/user ARP

caches using arpspoof attack (Threat 3) [11, 12]. To poison the ARP cache, the adversary first

sends a legitimate flow request to the Controller to install a flow rule, which establishes a route

to the victim IoT device. Then, the adversary forges a gratuitous ARP request to poison the

25

APR cache of the IoT device. The adversary also poisons the ARP cache of another user. The

IoT device packets are re-routed through the malicious adversary. This essentially allows the

adversary to view, copy, modify any instruction/data to or from the IoT device. The adversary

is also able to launch a MiTM attack (Threat 4). Moreover, it introduces the possibility of

additional attacks such as SSL stripping and session hijacking. Figure 3.3a shows a successful

attack. Figure 3.3b shows the administrator log-in request containing the login (“admin”) and

password (“password”) that have been captured.

With our security architecture, each of the devices, as well as the user machines, are authenti-

cated before they are connected to the IoT infrastructure using ECC. An adversar, who is not

an insider, will not be able to bypass the authentication phase. On the other hand, if the ad-

versary is an insider and is able to pass the ECC authentication phase, then the adversary will

be restricted by the security policies in the authorization service. Also, at the end of the ECC

authentication phase, each IoT device has established a secret key, which is used to encrypt its

flows. This creates a secure channel which the IoT device can use to send the credentials to

the web-server. Hence, the adversary is unable to steal the credentials. Figure 3.3c shows the

attempted attack detected by our architecture.

3.2 Performance

In this section, we present the performance of our security application and IoT devices con-

nected to the SDN network.

Application Performance

First, we present the performance of our applications running over ONOS. We measure the

throughput, CPU usages, and heap memory usage with and without our security architecture

using CBench and JConsole. Our topology uses 16 OpenFlow switches each connecting to 500

hosts.In this report, we focus mostly on the security issues of an IoT network infrastructure

rather than the performance issues.

Figure 3.4a shows a comparison between throughput of ONOS running with and without our

security applications. We varied the PEs and measured the throughput. The bar chart illustrates

26

14130.2

12180.61

10681.66

9540.9

8319.51

15980.9

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 PE 200 PE 300 PE 400 PE 500 PE Without

Av
er
ag
e
Th

ro
ug

hp
ut
(f
lo
w
s/
m
s)

No of Policy Expression

Policy Expression Vs Throughput
(Sixteen OpenFlow Switches)

(a)

49.1

0

10

20

30

40

50

60

70

80

90

100

CP
U
 U
SA

G
ES
 (I
N
 P
ER

CE
N
TA

G
E)

TIME (IN SECONDS)

CPU PERFORMANCE VS POLICY
(SIXTEEN OPENFLOW ACCESSPOINT)

100PE 200PE 300PE 400PE 500PE Without

Controller
booting Phase

Device Discovery
and Driver Load Phase

PbSA +ISA Query Phase

(b)

0.00 MB

200.00 MB

400.00 MB

600.00 MB

800.00 MB

0:
00

:0
0

0:
00

:0
4

0:
00

:0
8

0:
00

:1
2

0:
00

:1
6

0:
00

:2
0

0:
00

:2
4

0:
00

:2
8

0:
00

:3
2

0:
00

:3
6

0:
00

:4
0

0:
00

:4
4

0:
00

:4
8

0:
00

:5
2

0:
00

:5
6

0:
01

:0
0

0:
01

:0
4

0:
01

:0
8

0:
01

:1
2

0:
01

:1
6

0:
01

:1
9

0:
01

:2
3

0:
01

:2
7

0:
01

:3
1

0:
01

:3
5

0:
01

:3
9

0:
01

:4
3

0:
01

:4
7

0:
01

:5
1

0:
01

:5
5

0:
01

:5
9

0:
02

:0
3

0:
02

:0
7

0:
02

:1
1

0:
02

:1
5

0:
02

:1
9

0:
02

:2
3

0:
02

:2
7

0:
02

:3
1

0:
02

:3
5

0:
02

:3
9

0:
02

:4
3

0:
02

:4
7

0:
02

:5
1

0:
02

:5
5

0:
02

:5
9

0:
03

:0
3

0:
03

:0
7

0:
03

:1
1

0:
03

:1
5

0:
03

:1
9

0:
03

:2
3

0:
03

:2
7

0:
03

:3
1

0:
03

:3
5

0:
03

:3
9

0:
03

:4
3

0:
03

:4
7

0:
03

:5
1

0:
03

:5
4

0:
03

:5
8

H
ea

p
M
em

or
y
us
ed

 (i
n
M
B)

Time (in seconds)

Heap Memory Usages VS Policy Expression Variation
(Sixteen OpenFlow Switches)

100PE 200PE 300PE 400PE 500PE Without

Controller
booting Phase

Device Discovery
and Driver Load Phase PbSA +ISA Query Phase

(c)

Figure 3.4: a) Throughput, b) CPU Usages, and c) Heap Memory Usages

27

a decrease in throughput with increasing PEs. With 500 installed PEs, throughput is 8319.51

flow/ms. Without PbSA, ISA and with default applications running over ONOS, the throughput

is 15980.9 flow/ms.

Figures 3.4b and 3.4c shows CPU and heap memory usage with and without our applications;

we have varied the PEs from 100 to 500. With default applications, ONOS installs a number of

flows in the OpenFlow switches, and this incurs CPU load as well as heap memory usage. On

the other hand, applications associated with our security architecture only installs the permitted

flows thereby incurring less CPU and heap memory usage. We have provided a comparison

between both cases by changing the number of installed PEs. We have marked three distinct

zones in the curves based on ONOS tail log messages. They are i) Controller booting phase,

ii) Device discovery and driver loading phase, and iii) PbSA+ISA query phase. The phases are

marked using a red line in the graphs (Fig 3.4b, 3.4c).

During Controller booting phase, the various core Controller modules/ NBI applications gets

activated such as DHCP, Forwarding application etc, incurring a huge consumption in CPU and

Heap memory resources. In case of device discovery it also increases. As mentioned previously

with cbench, in case of normal SDN operation, each end host pings each other incurring huge

CPU and Heap memory usages. But with our security application some of the end host requests

are dropped incurring less CPU and Heap memory usages.

In Figure 3.4b, without our security architecture associated application, the CPU uses are steady

at around 10% when ONOS boots up. During the device discovery process, CPU usage in-

creases to 84%. Finally, while the flows are installed and communication process starts between

the IoT devices, the CPU usage remains consistent between 78-85%. With 500 PE, the PbSA

and ISA running over ONOS Controller use 14% of the CPU. During the device discovery

phase, CPU usage increases to 80%. Due to non-permissible security policies, communica-

tion requests are dropped by the Controller and the CPU usage decreases steadily. Finally, it

becomes constant around 55-60%.

Heap memory usage follows a similar pattern to the CPU usage. Without PbSA and ISA, it

remains at 150-160 MB during the ONOS booting phase. It increases up to 280MB during

the device discovery phase. Finally, in the communication establishment phase, it steadily

28

increases to 370 MB. With 500 PEs in PbSA and ISA application running, heap memory usage

becomes 140-150 MB during the Controller booting phase. During the device discovery phase,

it steadily increases up to 290MB. Due to non-permissible request, the heap memory usage

remains between 280-350MB.

Device Performance:

82.43143503

66.65999894

86.2745098

73.7254902

0

20

40

60

80

100

120

00
:0
0:
00

00
:0
1:
40

00
:0
3:
20

00
:0
5:
00

00
:0
6:
40

00
:0
8:
20

00
:1
0:
00

00
:1
1:
40

00
:1
3:
20

00
:1
5:
00

00
:1
6:
40

00
:1
8:
20

00
:2
0:
00

00
:2
1:
40

00
:2
3:
20

00
:2
5:
00

00
:2
6:
40

00
:2
8:
20

00
:3
0:
00

00
:3
1:
40

00
:3
3:
20

00
:3
5:
00

00
:3
6:
40

00
:3
8:
20

00
:4
0:
00

00
:4
1:
40

00
:4
3:
20

00
:4
5:
00

00
:4
6:
40

00
:4
8:
20

00
:5
0:
00

00
:5
1:
40

00
:5
3:
20

00
:5
5:
00

00
:5
6:
40

00
:5
8:
20

01
:0
0:
00

01
:0
1:
40

Ba
tt
er
y
Le
ve
l (
in
 p
er
ce
nt
ag
e)

Time

Device Power Consumption

 With Default Applications

 With PbSA Application

(a)

349.76

720.65

1477.56

1938.33

2589.18

330.66

690.9

1420.65

1860.89

2487.68

0

500

1000

1500

2000

2500

3000

100 OF‐AP 200 OF‐AP 300 OF‐AP 400 OF‐AP 500 OF‐AP

PA
TH

 S
ET

U
P
TI
M
E
(M

S)

NUMBER OF OPENFLOW ACCESS POINTS

AVERAGE PATH SETUP TIME BETWEEN DEVICES

With PbSA & ISA With default ONOS Applications

(b)

Figure 3.5: a) Device Power Consumption and b) Average Path Setup Time between Devices

We present the device end-to-end average path setup time (with varying OF-AP) and battery

consumption of an active IoT device. In Figure 3.5a with default applications running in the

IoT infrastructure, the IoT device’s battery decreases steadily to 73% within an hour of com-

munication. With PbSA and ISA, the IoT device’s battery consumption decreases steadily to

67% within an hour. The security mechanisms used in the IoT devices drains the battery power,

which is visible in 3.5a.

The average path setup time between IoT devices increases in both cases with the varying

number of OF-AP (Figure 3.5b). With ONOS default applications running, the average path

29

setup time for 100 OF-AP is 330.66ms and it steadily increases to 2487.68ms with 500 OF-

APs. On the other hand, with PbSA and ISA running over the controller causes some delay in

path setup time. In this case, with 100 OF-AP the average path setup time is 349.76ms and it

steadily increases to 2589.18ms with 500 OF-AP.

In this Section, we will describe how the intra domain security arechitecture can be extended

to multiple domains.

30

4. RELATED WORKS

There are several related works that are relevant to the work presented in this report. We have

divided them into three categories for comparison with our work.

4.1 Policies and SDN

In RFC 1102, Clark introduced policy-based routing for autonomous domains [4], which pro-

posed a simple policy syntax for interdomain communications. We have refined and extended

the policy syntax to develop fine-grained security policy specifications targeted for IoT de-

vices and SDN network characteristics. Das et al. in [13] present a context-sensitive policy

framework for IoT devices, to control and protect information sharing between them. Their

policies capture the diverse nature of IoT devices and their interaction with network users us-

ing attribute-based access control policy. Their work mostly focuses on the privacy of the user

data. In our case, we have focused on securing the IoT network infrastructure using fine gran-

ular access policies. Beetle [14] is an access control policy framework for operating systems

(Linux, Android) to control application interaction with peripheral device resources, and pro-

vides transparent access to network devices. Later, Hong used the Beetle framework in home

network gateways to control IoT communications [15]. This work does not address authen-

tication of IoT devices, or users, which our architecture does consider. Other work on access

control policies for IoT devices can be found in [16, 17, 18]. However, none of these works

have used SDN to manage and enforce the policies. Furthermore, they are mainly concerned

with user security rather than IoT security.

Some relevant related works in the context of network policy control in SDN include [19,

20, 21, 22, 23]. However these works did not address security aspects and in particular, did

31

not provide fine grained security policy based network management for IoT services, which

has been the main focus in our work. In 2016, we have proposed a policy based security

architecture for intra domain SDN communications in [24]. In this current work, we have

extended this policy language and architecture for IoT network infrastructure and added new

features to secure IoT devices from malicious devices and attacks.

4.2 IoT Security and Attacks

Pongle et al. in [25], Lyu et al. in [26] and Mendoza et al. in [27] consider various attacks

to compromise IoT networks. These works focus on analysing the vulnerabilities in IoT net-

work infrastructure, whereas our work is mainly concerned with the design of authentication

and authorization policy based security architecture for IoT network infrastructure. Pa et al.

in [28] provide an analysis of Telnet-based attacks on IoT devices. They propose an IoTPot (a

honeypot) and IoTBox (a sandbox), which help to attract Telnet based attacks against various

IoT devices running on different CPU architectures. Their work mostly focuses on analysing

the IoT malware threats. In this report, we have provided a detailed analysis of Mirai attack.

Moreover our security architecture helps to block telnet based attacks and prevent their spread-

ing. Capellupo et al. in [29] present an analysis of present home automation devices such as

Amazon Echo and TpLink smart plug and discuss how they can pose major security threats to

home networks and to user privacy. Their work focuses mainly on addressing different threat

vectors for the home IoT network infrastructure. Our approach helps to rectify some of the

problems mentioned in their work; for instance, our architecture can help to prevent unautho-

rised users/devices gaining access to network services and IoT device traffic.

4.3 Use of SDN for IoT

A network activity based IoT device blacklisting approach has been proposed in [30]. The

authors have used SDN features to dynamically block/ quarantine the malicious IoT devices

using access control policies. They have shown how a Philips Hue light-bulb can be protected

from user impersonation attack. This work only focuses on a particular type of IoT devices.

32

Our approach provides a security architecture for different types of IoT devices. Moreover,

the devices can be authenticated before they use the network services, which makes the IoT

network infrastructure more secure.

Use of SDN to control the IoT infrastructure is not new. SDN-WISE is the closest approach

to our architecture [2]. The investigators have used the SDN Controller to limit the amount of

information exchange between wireless sensor nodes. They introduced an API interface over

the ONOS Controller to program the IoT nodes. In our case, we have introduced authentica-

tion and authorization services for securing the flows from IoT devices. Hesham et al. in [31]

propose a simple Network Access Control (NAC) mechanism for machine to machine (M2M)

devices using SDN. Their NAC architecture for M2M devices captures minimal network fea-

tures (such as source and destination IP and bit rates). It is not as fine grained as our policies and

does not consider the IoT device specific parameters in access control. Qin proposed MINA

(Multinetwork INformation Architecture) [32], which uses SDN to manage IoT network in-

frastructure. The primary focus of this work is in the management of network services and

scheduling flows. The work in [33] is concerned with the quality of service and considers the

use of IoT infrastructure for managing large scale data generated from IoT sensors.

Xu et al. in [34] used SDN to prevent flow attacks in IoT infrastructure. They utilised dynamic

access control mechanism and real-time monitoring of the flow packets to defend the network

attacks. Black SDN [35] used SDN features to encrypt the header and payload to prevent some

attacks in the IoT infrastructure. Miettinen et al. in [1] developed an IoT device identification

system known as IoT Sentinel. IoT Sentinel used SDN to extract IoT device specific attributes.

In their model, legitimate IoT devices were identified using predictive modeling. In their work,

Gonzalez et al. in [36] considered management of a large number of IoT devices and their

traffic using SDN. However, this is not a security policy based approach.

In our approach, we have developed a security architecture that consists of lightweight authen-

tication and fine grained security policies, which have been enforced using SDN to control the

IoT network infrastructure. None of the above SDN-IoT approaches provide both lightweight

authentication and policy based authorization integrated with SDN architecture for IoT net-

works. This differentiates the work presented in this report from prior work in this area.

33

5. CONCLUSION

The report presents project summary on the “Software Defined Networks based Security Ar-

chitecture for IoT Infrastructures” project funded by the ISIF group. There are three milestones

for the project with specific deliverables for each milestone. In this report we presented a

summary of the outcome of third milestone ”Security Architecture for IoT” which consists of

the following tasks: i) Report on the Design of Security Architecture and Attack Detection

in IoT Infrastructures and ii) Proof of Concept of Security Architecture for IoT. The specific

contributions for third milestone can be summarised as follows:

• A SDN based security architecture that uses a policy based approach to secure IoT network

infrastructure and detect malicious IoT devices and attacks in intra domains.

• Authentication of IoT devices using a light-weight protocol, which is in turn used in the

provisioning of network services to authenticated IoT devices.

• Secure access to network services by authenticated devices using OAuth protocol.

• Extension of SDN based security architecture to secure IoT network infrastructure and detect

malicious IoT devices and attacks in inter domains.

• Demonstration of the proposed security architecture and protocols using a realistic IoT sce-

nario, showing how it can protect IoT infrastructure from attacks such as as the Mirai based

DDoS attacks, and detect malicious IoT devices and flows.

• Performance analysis of the proposed solution for securing IoT infrastructure.

The authors would like to thank ISIF ASIA for their financial contribution to the Project.

34

BIBLIOGRAPHY

[1] M. Miettinen et al., “Iot sentinel: Automated device-type identification for security en-

forcement in iot,” in Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-

tional Conference on. IEEE, 2017, pp. 2177–2184.

[2] L. Galluccio et al., “Sdn-wise: Design, prototyping and experimentation of a stateful sdn

solution for wireless sensor networks,” in Computer Communications (INFOCOM), 2015

IEEE Conference on. IEEE, 2015, pp. 513–521.

[3] K. Kalkan and S. Zeadally, “Securing internet of things (iot) with software defined net-

working (sdn),” IEEE Communications Magazine, no. 99, pp. 1–7, 2017.

[4] D. Clark, “Policy routing in internet protocols. request for comment rfc-1102,” Network

Information Center, 1989.

[5] A. Mohammadali et al., “A novel identity-based key establishment method for advanced

metering infrastructure in smart grid,” IEEE Trans. on Smart Grid, 2016.

[6] D. Hardt, “The oauth 2.0 authorization framework,” 2012.

[7] S. Sciancalepore et al., “Oauth-iot: An access control framework for the internet of things

based on open standards,” in Computers and Communications (ISCC), 2017 IEEE Sym-

posium on. IEEE, 2017, pp. 676–681.

[8] X. T. Phan et al., “A collaborative model for routing in multi-domains openflow net-

works,” in Computing, Management and Telecommunications, International Conference

on. IEEE, 2013, pp. 278–283.

35

[9] R. d. R. Fontes et al., “Mininet-wifi: A platform for hybrid physical-virtual software-

defined wireless networking research,” in Proceedings of the 2016 conference on ACM

SIGCOMM 2016 Conference. ACM, 2016, pp. 607–608.

[10] B. Visan et al., “Vulnerabilities in hub architecture iot devices,” in Consumer Communi-

cations & Networking Conference (CCNC), 2017 14th IEEE Annual. IEEE, 2017, pp.

83–88.

[11] Z. Yongchi et al., “Analysis of arp spoof attack,” Programmable Controller & Factory

Automation, vol. 2, p. 017, 2005.

[12] D. Smyth et al., “Exploiting pitfalls in software-defined networking implementation,” in

Cyber Security And Protection Of Digital Services, 2016 International Conference On.

IEEE, 2016, pp. 1–8.

[13] P. K. Das et al., “Context-sensitive policy based security in internet of things,” in Smart

Computing (SMARTCOMP), 2016 IEEE International Conference on. IEEE, 2016, pp.

1–6.

[14] A. A. Levy et al., “Beetle: Flexible communication for bluetooth low energy,” in Pro-

ceedings of the 14th Annual International Conference on Mobile Systems, Applications,

and Services, ser. MobiSys ’16. New York, NY, USA: ACM, 2016, pp. 111–122.

[15] J. Hong et al., “Demo: Building comprehensible access control for the internet of things

using beetle,” in Proceedings of the 14th Annual International Conference on Mobile

Systems, Applications, and Services Companion, ser. MobiSys ’16 Companion. ACM,

2016, pp. 102–102.

[16] A. L. M. Neto et al., “Aot: Authentication and access control for the entire iot device

life-cycle,” in Proceedings of the 14th ACM Conference on Embedded Network Sensor

Systems CD-ROM. ACM, 2016, pp. 1–15.

[17] C.-J. M. Liang et al., “Sift: building an internet of safe things,” in Proceedings of the 14th

International Conference on Information Processing in Sensor Networks. ACM, 2015,

pp. 298–309.

36

[18] A. A. Yavuz, “Eta: efficient and tiny and authentication for heterogeneous wireless sys-

tems,” in Proceedings of the sixth ACM conference on Security and privacy in wireless

and mobile networks. ACM, 2013, pp. 67–72.

[19] N. Foster et al., “Frenetic: A network programming language,” in ACM SIGPLAN Notices,

vol. 46, no. 9. ACM, 2011, pp. 279–291.

[20] T. L. Hinrichs et al., “Practical declarative network management,” in Proceedings of the

1st ACM workshop on Research on enterprise networking. ACM, 2009, pp. 1–10.

[21] J. Reich et al., “Modular sdn programming with pyretic,” Technical Reprot of USENIX,

2013.

[22] A. Voellmy et al., “Nettle: Taking the sting out of programming network routers,” in

Practical Aspects of Declarative Languages. Springer, 2011, pp. 235–249.

[23] ——, “Maple: simplifying sdn programming using algorithmic policies,” in ACM SIG-

COMM Computer Comm. Review, vol. 43, no. 4. ACM, 2013, pp. 87–98.

[24] K. K. Karmakar et al., “Policy based security architecture for software defined networks,”

in Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM, 2016,

pp. 658–663.

[25] P. Pongle et al., “A survey: Attacks on rpl and 6lowpan in iot,” in Pervasive Computing

(ICPC), 2015 International Conference on. IEEE, 2015, pp. 1–6.

[26] M. Lyu et al., “Quantifying the reflective ddos attack capability of household iot devices,”

in Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and

Mobile Networks. ACM, 2017, pp. 46–51.

[27] C. V. Mendoza et al., “Defense for selective attacks in the iot with a distributed trust man-

agement scheme,” in Consumer Electronics (ISCE), 2016 IEEE International Symposium

on. IEEE, 2016, pp. 53–54.

[28] Y. M. P. Pa et al., “Iotpot: analysing the rise of iot compromises,” EMU, vol. 9, p. 1, 2015.

37

[29] M. Capellupo et al., “Security and attack vector analysis of iot devices,” in International

Conference on Security, Privacy and Anonymity in Computation, Communication and

Storage. Springer, 2017, pp. 593–606.

[30] V. Sivaraman et al., “Network-level security and privacy control for smart-home iot de-

vices,” in Wireless and Mobile Computing, Networking and Communications (WiMob),

2015 IEEE 11th International Conference on. IEEE, 2015, pp. 163–167.

[31] A. Hesham et al., “A simplified network access control design and implementation for

m2m communication using sdn,” in Wireless Communications and Networking Confer-

ence Workshops (WCNCW), 2017 IEEE. IEEE, 2017, pp. 1–5.

[32] Z. Qin et al., “A software defined networking architecture for the internet-of-things,” in

Network Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014,

pp. 1–9.

[33] Y. Lu et al., “Sdtcp: Towards datacenter tcp congestion control with sdn for iot applica-

tions,” Sensors, vol. 17, no. 1, p. 109, 2017.

[34] T. Xu et al., “Defending against new-flow attack in sdn-based internet of things,” IEEE

Access, 2017.

[35] S. Chakrabarty et al., “Black sdn for the internet of things,” in Mobile Ad Hoc and Sensor

Systems (MASS), 2015 IEEE 12th International Conference on. IEEE, 2015, pp. 190–

198.

[36] C. Gonzalez et al., “Sdn-based security framework for the iot in distributed grid,” in

Computer and Energy Science (SpliTech), International Multidisciplinary Conference on.

IEEE, 2016, pp. 1–5.

38

	Introduction
	SDN based Security Architecture for IoT Network Infrastructure
	Why SDN for IoT Security?
	 Security Architecture for IoT Network Infrastructure
	Policy Based Security Architecture for Intra Domain
	IoT Security Application (ISA)

	Policy Based Security Architecture for Inter Domains
	Security Architecture Walk-through

	User Attributes

	Implementation
	Threat Mitigation
	Threats:
	Mitigation:

	Performance

	Related Works
	Policies and SDN
	IoT Security and Attacks
	Use of SDN for IoT

	Conclusion

