MATHS AND STATS

Graphing Linear Equations

Each point on a graph has co-ordinates (x, y) where x is the horizontal position of the point and y is the vertical position. A line on a graph is the set of all points which satisfy some mathematical rule, which is given by the line equation.

Eg For the line equation: $y=2 x-1$
Point $(0,-1)$ is on the line as $-1=2 \times(0)-1$ is true.
Both sides of $=$ come to the same value
(Note that we put the -1 in place of y and the 0 in place of x in the equation.)
Point $(-3,2)$ is not on the line, as $2 \neq 2 \times(-3)-1$

The same goes for $(1,1)$, or $(10,19)$, and also for, ($0.1,-0.8$), or ($-2.25,-5.5$).

Any point, which is on the line $y=2 x-1$ will make the equation 'work'.
(i.e. when you substitute the values for x and y in the equation, it is true.)

Gradient

- The gradient or slope of a line is given by

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The formula is used when you know two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on your line. Gradient can also be thought of as the rate of change in y as x changes: Every time you move 1 unit right, you move m units up.
A gradient is negative if it runs in the same direction as the sloping line in capital N . Horizontal lines have gradient $=0$, and vertical lines have infinite (∞) gradient.

- When an equation is written in the form, called Gradient - Intercept form

$$
y=m x+b
$$

m is the gradient and b is the y-intercept (as $y=0 x+b$ gives $y=b$)

x and y intercepts

To find where a line crosses the x-axis, set y to 0 and solve for x.
To find the y-intercepts, set x to 0 and solve for y.

Example

- Find the intercepts of $y=0.5 x+2$.

When $y=0$,

$$
\begin{align*}
& 0=0.5 x+2 \\
&-2=0.5 x \\
& x=-4 \tag{0,2}\\
& x \text {-intercept }=-4 \tag{-4,0}
\end{align*}
$$

When $x=0$,

$$
\begin{aligned}
& y=0.5 \times 0+2 \\
& y=2
\end{aligned}
$$

$$
y \text {-intercept }=2
$$

- Find the gradient m and y intercept b $\boldsymbol{y}=\mathbf{0 . 5 x}+2$ is written in the form

$$
y=m x+b
$$

so we get $m=0.5$ and $b=2$

- From the graph we can get the gradient m,

$$
m=\frac{\text { rise }}{r u n}=\frac{2}{4}=0.5
$$

(the slope is positive and we only want the lengths of the triangle sides shown)
and y-intercept $b=2$
(where the line crosses the y axis

Other formulas

These can be used to find the equation of a line with the information specified

$$
\begin{array}{ll}
\text { Equation from } 2 \text { points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right): & \frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\left(y-y_{1}\right)}{\left(x-x_{1}\right)} \\
\text { Equation from point }\left(x_{1}, y_{1}\right) \text { and gradient } m: & \left(y-y_{1}\right)=m\left(x-x_{1}\right)
\end{array}
$$

Gradient of a perpendicular line: $m_{2}=-\frac{1}{m_{1}}$ where m_{1} is the gradient of the other line.

Example

Find the equation of a line perpendicular to $2 x-y=4$ and passing through the point $(-4,5)$.
First we need the gradient of $2 x-y=4$
Rearrange to make y the subject: $y=2 x-4, \quad m_{1}=2$.
The gradient of the line we want is $m_{2}=-\frac{1}{m_{1}} \quad m_{2}=-\frac{1}{2}$.
Using the point and gradient formula with $m=-\frac{1}{2}$ and point $(-4,5)$

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\
y-5 & =-\frac{1}{2}(x+4) \\
y-5 & =-\frac{1}{2} x-2 \\
y & =-\frac{1}{2} x+3
\end{aligned}
$$

Exercises

1. For the line $y=4 x-7$ find the
(i) gradient
(ii) y-intercept
(iii) x-intercept
2. Find the equation of the line through the points $(1,2)$ and $(5,8)$
3. Is $(2,5)$ on the line $y=3 x+2$
4. For this graph (next page), find the
(i) gradient
(ii) y-intercept
(iii) equation of the line

5. Write the equation of a line parallel to $y=-4 x+5$
6. Write the equation of a line perpendicular to $y=3 x-9$
7. What point on the line $y=-\frac{2}{3} x-7$ has an x-coordinate of 9 ?
8. Find the equation of the line parallel to $2 y-6 x-3=0$ passing through the point $(1,-2)$.

Answers

1. (i) $m=4$
(ii) -7
(iii) $\frac{7}{4}$
2. $y=\frac{3}{2} x+\frac{1}{2}$
3. No
$4 \quad$ (i) $m=-3$
(ii) 3
(iii) $y=-3 x+3$
4. Many answers all of the form $y=-4 x+b$ eg $y=-4 x+3$
5. Many answers all of the form $y=-\frac{1}{3} x+b$ eg $y=-\frac{1}{3} x+2$
6. $(9,-13)$
7. $y=-\frac{1}{3} x-\frac{5}{3}$
