
MATHS AND STATS

Graphing Linear Equations

Each point on a graph has co-ordinates (x, y) where x is the horizontal position of the point and y is the vertical position. A line on a graph is the set of all points which satisfy some mathematical rule, which is given by the line equation.

Eg For the line equation: y = 2x - 1Point (0, -1) is on the line as $-1 = 2 \times (0) - 1$ is true. Both sides of = come to the same value (Note that we put the -1 in place of y and the 0 in place of x in the equation.)

Point (-3, 2) is not on the line, as $2 \neq 2 \times (-3) - 1$

The same goes for (1, 1), or (10, 19), and also for, (0.1, -0.8), or (-2.25, -5.5).

Any point, which is on the line y = 2x - 1will make the equation 'work'. (i.e. when you substitute the values for x and y in the equation, it is true.)

Gradient

• The gradient or slope of a line is given by

 $m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$

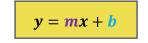
The formula is used when you know two points (x_1, y_1) and (x_2, y_2) on your line. Gradient can also be thought of as the rate of change in y as x changes: Every time you move 1 unit right, you move m units up.

A gradient is negative if it runs in the same direction as the sloping line in capital N. Horizontal lines have gradient = 0, and vertical lines have infinite (∞) gradient.

• When an equation is written in the form, called Gradient – Intercept form

$$y = mx + b$$

m is the gradient and *b* is the *y*-intercept (as y = 0x + b gives y = b)



x and y intercepts

To find where a line crosses the *x*-axis, set *y* to 0 and solve for *x*. To find the *y*-intercepts, set *x* to 0 and solve for *y*.

Example

- Find the intercepts of y = 0.5x + 2. When y = 0, 0 = 0.5x + 2 -2 = 0.5x x = -4x-intercept = -4 (-4, 0) When x = 0, $y = 0.5 \times 0 + 2$ y = 2y-intercept = 2 (0, 2)
- Find the gradient *m* and *y* intercept *b* y = 0.5x + 2 is written in the form

so we get m = 0.5 and b = 2

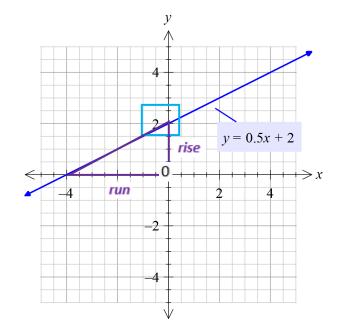
From the graph we can get the gradient m,

$$m = \frac{rise}{run} = \frac{2}{4} = 0.5$$

(the slope is positive and we only want the lengths of the triangle sides shown)

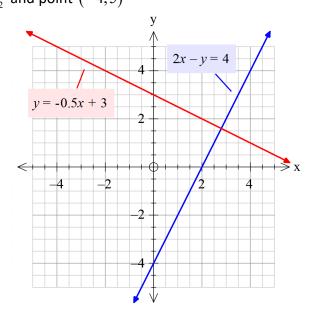
and *y*-intercept *b* = 2 (where the line crosses the *y* axis

Other formulas


These can be used to find the equation of a line with the information specified

Equation from 2 points (x_1, y_1) and (x_2, y_2) : Equation from point (x_1, y_1) and gradient *m*: $\frac{(y_2 - y_1)}{(x_2 - x_1)} = \frac{(y - y_1)}{(x - x_1)}$ Equation from point (x_1, y_1) and gradient *m*: $(y - y_1) = m(x - x_1)$

Gradient of a perpendicular line: $m_2 = -\frac{1}{m_1}$ where m_1 is the gradient of the other line.

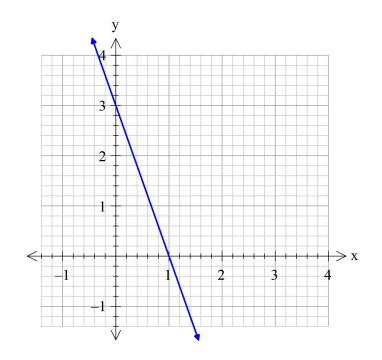


Example

Find the equation of a line perpendicular to 2x - y = 4 and passing through the point (-4, 5).

First we need the gradient of 2x - y = 4Rearrange to make y the subject: y = 2x - 4, $m_1 = 2$. The gradient of the line we want is $m_2 = -\frac{1}{m_1}$ $m_2 = -\frac{1}{2}$. Using the point and gradient formula with $m = -\frac{1}{2}$ and point (-4,5)

> $(y - y_1) = m(x - x_1)$ y - 5 = $-\frac{1}{2}(x + 4)$ y - 5 = $-\frac{1}{2}x - 2$ y = $-\frac{1}{2}x + 3$



Exercises

- 1. For the line y = 4x 7 find the
 - (i) gradient
 - (ii) y-intercept
 - (iii) x-intercept
- 2. Find the equation of the line through the points (1, 2) and (5, 8)
- 3. Is (2, 5) on the line y = 3x + 2
- 4. For this graph (next page), find the
 - (i) gradient
 - (ii) y-intercept
 - (iii) equation of the line

- 5. Write the equation of a line parallel to y = -4x + 5
- 6. Write the equation of a line perpendicular to y = 3x 9
- 7. What point on the line $y = -\frac{2}{3}x 7$ has an *x*-coordinate of 9?
- 8. Find the equation of the line parallel to 2y 6x 3 = 0 passing through the point (1, -2).

Answers

1. (i)
$$m = 4$$

(ii) -7
(iii) $\frac{7}{4}$
2. $y = \frac{3}{2}x + \frac{1}{2}$
3. No
4 (i) $m = -3$
(ii) 3
(iii) $y = -3x + 3$
5. Many answers all of the form $y = -4x + b$ eg $y = -4x + 3$
6. Many answers all of the form $y = -\frac{1}{3}x + b$ eg $y = -\frac{1}{3}x + 2$
7. (9, -13)
8. $y = -\frac{1}{3}x - \frac{5}{3}$

