

Solving equations involving logs and exponentials

Solving basic log and exponential equations

• If the equation is in index form, change it to log form to solve for the unknown.

Find x when

$$10^x = 25$$

 \leftarrow

$$\log_{10} 25 = x$$

Using the calculator $x \approx 1.398$

• If the equation is in log form, change it to index form to solve for the unknown.

Find x when

$$\log_{10} x = 1.9$$

←

$$10^{1.9} = x$$

Using the calculator $x \approx 79.433$

Exercises A

Change from log to index form or vice-versa to find the value of x.

Note: \log_e is denoted ln on the calculator and \log_{10} is denoted \log on the calculator.

a)
$$\log_{10} x = 0.5$$

e)
$$e^x = 212$$

b)
$$\log_{10} x = 1.2$$

f)
$$e^x = 96$$

c)
$$10^x = 28$$

g)
$$\log_{e} x = 0.2$$

d)
$$10^x = 45$$

h)
$$\log_{e} x = 1.8$$

Solving log equations

Example

1. Solve
$$\log_{10}(10x - 5) = 2.$$

$$\log_{10}(10x - 5) = 2 \text{ in index form is } 10^2 = 10x - 5.$$
So solve
$$100 = 10x - 5$$

$$105 = 10x$$

$$x = 10.5$$

Exercises B

Solve the following equations for x

1)
$$\log_5(x) = 2$$

2)
$$\log_3(20x) = 3$$

3)
$$\log_{10}(4x) = 2$$

$$4) \quad \log_4\left(\frac{x}{2}\right) = 6$$

$$5) \quad \log_2\left(\frac{2x}{5}\right) = 1$$

6)
$$\log_3\left(\frac{3x}{4} + 1\right) = 8$$

Solving exponential equations

Example

Solve $5000 = 1500(1.08)^n$.

 $n \approx 15.6$

$$\frac{5000}{1500} = 1.08^n \qquad \text{(dividing both sides by 1500)}$$

$$\log\left(\frac{10}{3}\right) = \log(1.08^n) \qquad \text{(take log of both sides)}$$

$$\log\left(\frac{10}{3}\right) = n\log(1.08) \qquad \text{(using log rule C)}$$

$$\frac{\log\left(\frac{10}{3}\right)}{\log(1.08)} = n \qquad \text{(dividing both sides by log(1.08))}$$

Exercises C

1) Solve
$$50 = 5^n$$

2) Solve
$$1000 = 100(1.02)^n$$

3) Solve
$$6000 = 200(1.03)^n$$

4) Solve
$$2500 = 500(1.005)^n$$

5) Solve
$$1200 = 60(1.005)^{n/12}$$

6) Solve
$$4500 = 2000(1.004)^{n/52}$$

7) Solve
$$1500 = 1000(1.01)^{n/4}$$

8) Solve
$$4000 = 4000(1.05)^{n/6}$$

Answers

Answers A

a)
$$\log_{10} x = 0.5 \rightarrow x = 10^{0.5} \rightarrow x = 3.16$$

b)
$$\log_{10} x = 1.2 \rightarrow x = 10^{1.2} \rightarrow x = 15.85$$

c)
$$10^x = 28 \rightarrow x = \log_{10} 28 \rightarrow x = 1.45$$

d)
$$10^x = 45 \rightarrow x = \log_{10} 45 \rightarrow x = 1.65$$

e)
$$e^x = 212 \rightarrow x = \log_e 212 \rightarrow x = 5.36$$

f)
$$e^x = 96 \rightarrow x = \log_e 96 \rightarrow x = 4.56$$

g)
$$\log_e x = 0.2 \rightarrow x = e^{0.2} \rightarrow x = 1.22$$

h)
$$\log_e x = 1.8 \rightarrow x = e^{1.8} \rightarrow x = 6.05$$

Answers B

1)
$$x = 25$$

2)
$$x = \frac{27}{20}$$

3)
$$x = 25$$

4)
$$x = 8192$$

5)
$$x = 5$$

6)
$$x = 8746\frac{2}{3}$$

Answers C

1)
$$n \approx 2.43$$

2)
$$n \approx 116.28$$

3)
$$n \approx 115.07$$

4)
$$n \approx 322.69$$

5)
$$n \approx 7207.72$$

6)
$$n \approx 10563.16$$

7)
$$n \approx 163.00$$

8)
$$n = 0$$

