Operations with Surds

Numbers like $\sqrt{2}, \sqrt{3}, \sqrt{5}$ and $\sqrt{6}$ are all irrational and are called surds.
To work efficiently with surds you need to know your perfect square numbers.
$4,9,16,25,36,49,64,81,100,121,144,169,196,225,256 . .$.

Simplifying surds

Rules: $\sqrt{a b}=\sqrt{a} \times \sqrt{b} \quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
Examples:
1.) $\frac{\sqrt{36}}{\sqrt{9}}=\sqrt{\frac{36}{9}}=\sqrt{4}=2$
2.) $\sqrt{60}=\sqrt{4 \times 15}=\sqrt{4} \times \sqrt{15}=2 \sqrt{15}$

To simplify we look for factors that are squares. If you can't find the largest square factor you can always work in small steps.

Examples:
3.) $\sqrt{180}=\sqrt{9} \times \sqrt{20}=3 \sqrt{20}=3 \sqrt{4} \times \sqrt{5}=3 \times 2 \times \sqrt{5}=6 \sqrt{5}$
4.) $3 \sqrt{6} \times 2 \sqrt{12}=6 \sqrt{72}=6 \sqrt{9 \times 8}=6 \times 3 \times \sqrt{8}=18 \sqrt{4 \times 2}=18 \times 2 \sqrt{2}=36 \sqrt{2}$

Addition and subtraction

You can only add or subtract surds if they are the same type
Examples:
1.) $\sqrt{3}+5 \sqrt{3}-2 \sqrt{3}=4 \sqrt{3}$
2.) $5 \sqrt{3}+2 \sqrt{7}-3 \sqrt{3}+4 \sqrt{7}=2 \sqrt{3}+6 \sqrt{7}$

More complex cases of simplifying surds

Sometimes you will need to use more than one process in order to simplify surds.
Example
1.)

$$
\begin{aligned}
\sqrt{8}-\sqrt{18}+\sqrt{50} & =\sqrt{4} \times \sqrt{2}-\sqrt{9} \times \sqrt{2}+\sqrt{25} \times \sqrt{2} \\
& =2 \sqrt{2}-3 \sqrt{2}+5 \sqrt{2} \\
& =4 \sqrt{2}
\end{aligned}
$$

Rationalising the denominator

To write an expression in simplest form we sometimes want to have a whole number as the denominator

Example:
1.) $\frac{\sqrt{6}}{\sqrt{5}}=\frac{\sqrt{6}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{30}}{5}$

Here we simply multiply by the denominator over itself, as it is a single surd.

More complex cases of rationalising the denominator

When the denominator is not just a single surd but something like $4+\sqrt{3}$ or $2-\sqrt{5}$ we can't simply multiply by the denominator as this will still leave us with an irrational denominator. We need to multiply by the conjugate of the denominator. If the denominator is $4+\sqrt{3}$, then the conjugate is $4-\sqrt{3}$ (just change the sign of the surd part)

Example:

2) Write $\frac{3}{2-\sqrt{7}}$ with a rational denominator

$$
\begin{aligned}
\frac{3}{2-\sqrt{7}} & =\frac{3}{2-\sqrt{7}} \times \frac{2+\sqrt{7}}{2+\sqrt{7}} \\
& =\frac{3(2+\sqrt{7})}{(2-\sqrt{7})(2+\sqrt{7})} \\
& =\frac{6+3 \sqrt{7}}{4+2 \sqrt{7}-2 \sqrt{7}-\sqrt{7} \times \sqrt{7}} \\
& =\frac{6+3 \sqrt{7}}{4-7} \\
& =\frac{6+3 \sqrt{7}}{-3} \quad \text { or }-2-\sqrt{7}
\end{aligned}
$$

3.) Rationalize the denominator of $\frac{2+\sqrt{3}}{3+\sqrt{5}}$

$$
\begin{aligned}
\frac{2+\sqrt{3}}{3+\sqrt{5}} & =\frac{2+\sqrt{3}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} \\
& =\frac{(2+\sqrt{3}) \times(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\
& =\frac{6+3 \sqrt{3}-2 \sqrt{5}-\sqrt{3} \times \sqrt{5}}{9+3 \sqrt{5}-3 \sqrt{5}-\sqrt{5} \times \sqrt{5}} \\
& =\frac{6+3 \sqrt{3}-2 \sqrt{5}-\sqrt{15}}{9-5} \\
& =\frac{6+3 \sqrt{3}-2 \sqrt{5}-\sqrt{15}}{4}
\end{aligned}
$$

This cannot be simplified any more.

Exercises

1.) Simplify the following surds
(a) $\sqrt{80}$
(c) $\sqrt{\frac{25}{4}}$
(b) $3 \sqrt{54}$
(d) $5 \sqrt{128}$
2.) Simplify the following surds
(a) $5 \sqrt{7}-2 \sqrt{7}+4 \sqrt{7}$
(b) $\sqrt{150}-2 \sqrt{2}+4 \sqrt{6}$
3.) Write the following in simplest form
(a) $\sqrt{6} \times \sqrt{10}$
(b) $\sqrt{5} \times \sqrt{7}$
(c) $5 \sqrt{12} \times 3 \sqrt{2}$
4.) Write the following with a rational denominator
(a) $\frac{1}{\sqrt{5}}$
(d) $\frac{4}{3-\sqrt{2}}$
(b) $\frac{2}{\sqrt{3}}$
(e) $\frac{2}{3-\sqrt{5}}$
(c) $\frac{\sqrt{10}}{2 \sqrt{5}}$
(f) $\frac{3 \sqrt{3}}{5+\sqrt{2}}$

Answers

1. (a) $4 \sqrt{5}$
2. (a) $7 \sqrt{7}$
(b) $9 \sqrt{5}$
(b) $9 \sqrt{6}-2 \sqrt{2}$
(c) $\frac{5}{2}$
(d) $8 \sqrt{2}$
3. (a) $2 \sqrt{15}$
(b) $\sqrt{35}$
(c) $30 \sqrt{6}$
4. (a) $\frac{\sqrt{5}}{5}$
(b) $\frac{2 \sqrt{3}}{3}$
(c) $\frac{\sqrt{50}}{10}$ or $\frac{\sqrt{2}}{2}$
(d) $\frac{12+4 \sqrt{2}}{7}$
(e) $\frac{3+\sqrt{5}}{2}$
(f) $2 \sqrt{3}-\sqrt{6}$
