Balancing Competing Goals Through Algorithms
A case study of successful industry and university engagement
Summary
|
Preventive Maintenance Scheduling in the Rail Industry
Aurizon, previously known as QR National, has over 147 years of rail freight industry experience. With rail services stretching from Cairns in Queensland to Perth in Western Australia, Aurizon moves coal, iron ore and other minerals as well as agricultural and general freight.
The company operates and manages the Central Queensland Coal Network made up of approximately 2,670km of heavy haul rail infrastructure.
The goal of maximising the tonnage transported across a rail network coupled with the need to maintain that network to ensure its operating efficiency is a daunting task.
Quick assessment and evaluation of candidate track possession regimes greatly enhances the ability to construct track possession regimes that balance these conflicting and competing goals and needs.
Image: C-OPT researchers Professor Martin Savelsbergh and Professor Natasha Boland
A candidate possession regime specifies a list of maintenance tasks, with information for each task including:
- start date and time
- end date and time
- which infrastructure component it affects and by how much.
To assist in scheduling maintenance tasks while maintaining network efficiency, the Centre for Optimal Planning and Operations (C-OPT) developed a flow-based analysis tool that takes a candidate possession regime and efficiently determines the maximum amount of coal that can be transported from mine load points to coal terminals at the port over a given planning horizon.
The transport of
coal over a rail infrastructure causes deterioration or wear. Maintenance is
undertaken to restore the condition of the infrastructure. The coal transports from load points to
terminals determined by the optimal flows together with the scheduled
maintenance tasks allows the calculation of a wear-to-repair ratio for each of the track sections over a period
of time. C-OPT's analysis tool automatically
establishes wear-and-repair ratios for all the track sections in additional to
determining the maximum throughput.
C-OPT's flow-based analysis tool has become an integral part of the possession regime construction process and not only ensures that Aurizon can meet its contracted coal transport obligations, but that the company also has the ability to increase contracted coal transport volume without having to invest in additional infrastructure by using existing infrastructure more effectively.
C-OPT continues to add features to the analysis tool so as to facilitate the construction of optimal preventive maintenance schedules across the multiple rail networks operated by Aurizon.
Further Information
For further information regarding Optimisation and the flow-based analysis tool developed for Aurizon, please visit the University of Newcastle Centre for Optimal Planning and Operations.
For further information regarding collaborative engagement with the University of Newcastle and its researchers, please contact the Research Development Team.

