Complex Analysis

Course code MATH3242Units 10Level 3000Faculty of Science and Information TechnologySchool of Mathematical and Physical Sciences

Complex analysis forms a basis for not only advanced mathematical topics (including differential equations, number theory, operator theory and others) but also for special functions of mathematical and quantum physics - subjects used to understand the world in which we live. The course covers fundamental knowledge in the theory of analytical functions with applications to definite integration and culminates with study of harmonic and special functions.

MATH3242 cannot be counted for credit with Math2420.

Available in 2015

Callaghan CampusSemester 2
Previously offered in 2014
ObjectivesOn successful completion of this course, students will be able to:

1. use analytical functions and conformal mappings;
2. compute definite integrals using residue calculus;
3. appreciate the existance of special functions and their use in a range of contexts.
Content. Functions of complex variable.
. Differentiation of functions.
. Cauchy's integral theorem.
. The calculus of residues. Series expansions.
. Contour integration.
. Conformal mappings and further results on analytic functions.
. Harmonic functions.
. Entire functions and infinite products.
. Special functions.
Replacing Course(s)NA
Industrial Experience0
Assumed KnowledgeMATH2310
Modes of DeliveryInternal Mode
Teaching MethodsLecture
Assessment Items
Essays / Written Assignments
Examination: Formal
Quiz - Class
Contact HoursLecture: for 3 hour(s) per Week for Full Term
Timetables2015 Course Timetables for MATH3242