Available in 2017
Course code

ELEC4400

Units

10 units

Level

4000 level

## Course handbook

### Description

This course treats the basic principles of the automatic control of industrial processes and machines. The emphasis of the subject is on continuous time control, although some introductory material on sequential logic control (or programmable logic control) is included.

### Availability2017 Course Timetables

#### Callaghan

• Semester 1 - 2017

#### UoN Singapore

• Trimester 2 - 2017 (Singapore)

### Learning outcomes

On successful completion of the course students will be able to:

1. Formulate quantitative models of feedback control systems built from mechanical, chemical, electrical and electronic components described by linear, ordinary differential equations

2. Analyse single input, single output feedback control systems for stability, steady state and transient performance

3. Understand the scope and limitations of fundamental control strategies, and be able to design simple compensation schemes for improved control; and

4. Understand the basics of using programmable logic controllers (PLCs) in implementing switching control systems.

### Content

1. Dynamic models: Differential equations, Modelling, Linearisation
2. Mathematical background: Review of complex numbers, Laplace transform, Initial and Final value theorems
3. Transfer Functions: Open-loop stability, Poles, Zeros, Time response, Transients, Steady-state, Block diagrams
4. Feedback principles: Open versus Closed-loop control, High gain control, Inversion, On-off control, Programmable logic controllers (PLCs)
5. Stability of closed-loop systems: Routh's method, Root locus
6. PID control: Structure, Design using root locus, Empirical tuning, Anti-windup protection
7. Pole assignment: Sylvester's theorem, PI and PID synthesis using pole assignment
8. Frequency Response: Nyquist plot, Bode diagram, Nyquist stability theorem, Stability margins, Closed-loop sensitivity functions, Model errors, Robust stability
9. Controller design using frequency response: Proportional control, Lead-lag control, PID control revisited
10. Structures of automatic control: Smith predictor, Feedforward control, Cascade control, Decentralised control of MIMO plants, Control schemes in process control

### Assumed knowledge

MATH2310 AND (ELEC2400 OR MCHA2000)

### Assessment items

Written Assignment: Individual Assignment

Report: Laboratory Report (Group)

Formal Examination: Formal Examination

### Contact hours

#### Callaghan

##### Laboratory

Face to Face On Campus 4 hour(s) per Week for Full Term

##### Lecture

Face to Face On Campus 3 hour(s) per Week for Full Term

##### Tutorial

Face to Face On Campus 1 hour(s) per Week for Full Term

#### UoN Singapore

##### Laboratory

Face to Face On Campus 4 hour(s) per Term

PSB students enrolled in the part-time evening program at UoN Singapore will receive equivalent instruction delivered in a block mode of 7 teaching weeks.

##### Lecture

Face to Face On Campus 4 hour(s) per Week for Full Term starting in week 1

##### Tutorial

Face to Face On Campus 1 hour(s) per Week for Full Term