Advanced Drivers and Power Electronics

Description

Analyses the dynamic behaviour of D.C. and A.C machines in the context of their application. Space vector theory is utilised to develop control strategies for these machines especially vector control and torque and flux control. Advanced topics in power electronics, including design of gate and base circuits, multilevel converters, and electric utility applications are investigated.

Availability

Callaghan Campus

  • Semester 2 - 2015

Learning Outcomes

1. Solve electrical engineering problems associated with electric drive systems and electric machines.

2. Solve electrical engineering problems associated with grid connected power electronics.

3. Perform experiments on AC and DC drives, collect data using appropriate measurement equipment and analyse this data so that reasonable conclusions can be made.

4. Perform as a member of a team in carrying out laboratory tasks.

5. Perform as a member of a team in a high level engineering project making engineering design; resource allocation; component selection and algorithm applicability decisions.

6. Perform work safely and be aware of the workplace health and safety implications of the tasks carried out.

Content

Topics may include but are not limited to:

  1. DC drives
  2. AC drives - a) Field orientated control b)Torque and flux control
  3. Gate and Base drives
  4. Static V Ar compensators
  5. Active filters
  6. High voltage DC converters
  7. Grid interconnection of renewable energy sources

Assumed Knowledge

ELEC3130, ELEC3250, ELEC4400

Assessment Items

Formal Examination: Formal Examination

Tutorial / Laboratory Exercises: Laboratories

Project: Project

Quiz: Mid Semester Quiz

Contact Hours

Laboratory

Face to Face On Campus 1 hour(s) per Week for Full Term

Lecture

Face to Face On Campus 3 hour(s) per Week for Full Term

Tutorial

Face to Face On Campus 1 hour(s) per Week for Full Term