# Bayesian Statistical Methods

 Course code BIOS6130 Units 10 Level 6000 Faculty of Health and MedicineSchool of Medicine and Public Health

This course will provide students with an understanding of the logic of Bayesian statistical inference (i.e. the use of probability models to quantify uncertainty in statistical conclusions)and allow them to acquire skills to perform practical Bayesian analysis relating to health research problems.
This course is offered in conjunction with the Biostatistics collaboration of Australia (BCA).

### Available in 2014

Distance Education - Callaghan Semester 2
Previously offered in 2012, 2010, 2008, 2007, 2006, 2005, 2004
ObjectivesOn completion students should:
1. have a thorough understanding of Bayesian statistical inference;
2. be able to compare Bayesian methods to standard statistical methods;
3. be able to apply appropriate Bayesian statistical methods to the analysis of health/medical related data.
ContentThe first component of the course is an introduction to simple one-parameter models with conjugate prior distributions, which are fundamental to Bayesian statistics. This knowledge is built upon by introducing students to standard models containing two or more parameters, including specifics for the normal location-scale model. Once students have this knowledge, they will then be shown the relationship between Bayesian methods and the standard approaches to statistics. The next component of the course will provide students with practical experience using computational techniques for Bayesian analyses via common statistical software. Finally, students will be exposed to the application of Bayesian methods for fitting hierarchical models to complex data structures.
Replacing Course(s)N/A
TransitionN/A
Industrial Experience0
Assumed KnowledgeEpidemiology (EPID6420);
Mathematical Background for Biostatistics (BIOS6040);
Principles of Statistical Inference (BIOS6050);
Linear Models (BIOS6070);
Categorical Data & GLMs (BIOS6020);
Probability and Distribution Theory (BIOS6170);
Modes of DeliveryDistance Learning : Paper Based
Teaching MethodsSelf Directed Learning
Assessment Items
Essays / Written Assignments 100% assignments (40% practical exercises, and two case study assignments worth 30% each).
Contact HoursSelf Directed Learning: for 6 hour(s) per Week for Full Term
Timetables